80. Deoxy-nitrosugars

12th Communication ${ }^{1}$)

Synthesis of Isosteric Mono-Phosphonate Analogues of $\boldsymbol{\beta}$ - and $\boldsymbol{\alpha}$-d-Fructose 2,6-Bisphosphate

by Roger Meuwly and Andrea Vasella*
Organisch-Chemisches Institut der Universität Zürich, Winterthurerstr. 190, CH-8057 Zürich

(17.III.86)

Abstract

A synthesis of the isosteric mono-phosphonate analogues $\mathbf{2 a}$ and 19 of the β - and α-D-fructose 2,6-bisphosphate, respectively, is described. Chain elongation of the 1-deoxy-1-nitro-d-arabinose 3 (Scheme 1) by a Henry reaction with paraformaldehyde followed by protection of the resulting alcohol (methoxymethyl ether) and a radical-chain substitution by nitromethane anion gave the key intermediates, the gluco-anhydroalditol 6 and the manno-anhydroalditol 7. These products equilibrated under basic conditions. Conversion of 7 to the aldehyde 9 , Abramov reaction of 9 with diphenyl phosphite followed by deoxygenation according to Barton gave the phosphonate 11 (Scheme 2). Selective hydrogenolysis of 11, phosphorylation and deprotection gave 2 which was converted to the tetrasodium salt 2a. Similarly, 6 was transformed into the isosteric phosphonate analogue 19 of the α-D-fructose 2,6-bisphosphate (Scheme 3).

Introduction. - The recent discovery of β-D-fructose 2,6-bisphosphate ${ }^{2}$) (1) in animals [3-5] and then in plants [6-8] has been of crucial importance for our understanding of glycolysis (glucose utilisation) and gluconeogenesis (de novo biosynthesis). β-D-Fructose 2,6 -bisphosphate is the regulating agent of these metabolic pathways. It activates glycolysis by stimulating 6-phosphofructo-1-kinase (EC 2.7.1.11), which converts fructose 6-phosphate into fructose 1,6 -bisphosphate, and it deactivates gluconeogenesis by inhibiting fructose-1,6-bisphosphatase (EC 3.1.3.11), the enzyme which catalyses the reverse reaction [9-11].

1

$2 \mathrm{R}=\mathrm{H}$
2a $\mathrm{R}=\mathrm{Na}$

Since 1 is very prone to hydrolytic and enzymatic degradation to D -fructose 6-phosphate, analogues such as 2 in which the $\mathrm{P}-\mathrm{O}$ bond of the phosphate monoester at the anomeric center is replaced by a non-hydrolysable $\mathrm{P}-\mathrm{C}$ bond could prove useful for biochemical and pharmacological studies.

[^0]Our approach to the synthesis of the isosteric phosphonate analogue 2 of β-D-fructose 2,6-bisphosphate is based on the expectation that the substitution of a tertiary NO_{2} group by a nitromethane moiety as reported by Kornblum and Erickson [12] is applicable to protected 2-deoxy-2-nitrouloses such as $\mathbf{4}$ or $\mathbf{5}$, i.e. to tertiary nitro ethers ${ }^{3}$) (Scheme 1). Substitution of the NO_{2} group of 4 by nitromethane anion to introduce the second C-substituent should give 7, which can be converted to the desired compound 2. The key step of the synthesis is the stereochemically controlled substitution of the anomeric NO_{2} group by the nitromethane anion.

Results. - Base-catalysed reaction of 1-deoxy-1-nitro-D-arabinose 3 [14] with excess paraformaldehyde followed by protection of the resulting OH group as the methoxymethyl ether (formaldehyde dimethyl acetal in presence of $\mathrm{P}_{2} \mathrm{O}_{5}[15]$) gave the nitro compounds $4(53 \%)$ and 5 (13%) (Scheme 1). Their configurations were inferred from their ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra. The known shielding effect of the NO_{2} group on a vicinal $\mathrm{H}_{\text {cis }}[16]$ indicates the depicted configurations $(\mathrm{H}-\mathrm{C}(3)$ at 4.37 ppm for 5 and at $>4.52 \mathrm{ppm}$ for 4).

Treatment of the mixture $\mathbf{4 / 5}$ (4:1) with 4 equiv. of $\mathrm{CH}_{3} \mathrm{NO}_{2}$ and 8 equiv. of NaH in DMSO [12] gave the gluco-anhydroalditol 6 (49\%), the manno-anhydroalditol 7 (17%), and the erythro-hex-2-enitol $8(6 \%)$. The configuration at $\mathrm{C}(2)$ of 6 and 7 was deduced from the nuclear Overhauser effects between $\mathrm{H}-\mathrm{C}(3)$ and $\mathrm{CH}_{2} \mathrm{NO}_{2}$ in 6 and between $\mathrm{H}-\mathrm{C}(3)$ and $\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{OCH}_{3}$ in 7. The gluco- and manno-configurations of 6 and 7, respectively, are not in contradiction with their ${ }^{13} \mathrm{C}$-NMR spectra (75.52 ppm for $\mathrm{CH}_{2} \mathrm{NO}_{2}$ in 6 and, 75.10 ppm for $\mathrm{CH}_{2} \mathrm{NO}_{2}$ in 7), considering the known shielding effect of an alkoxy group on a vicinal $\mathrm{C}_{\text {cis }}[17]$ [18]. Fortuitously, the epimers 6 and 7 equilibrated upon treatment with $\mathrm{Bu}_{4} \mathrm{NF} \cdot 3 \mathrm{H}_{2} \mathrm{O}^{4}$). Starting with a solution of either 6 or 7 in THF^{5}), $6 / 7$ was obtained in a final ratio of $45 / 55$. The equilibration allowed to accumulate the desired isomer 7.

[^1]Scheme 2

The nitro compound 7 was converted into the aldehyde $9(74 \%)$ by ozonolysis of the nitronate anion [21] (Scheme 2). Abramov reaction of 9 with an excess of diphenyl phosphite in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ followed by treatment of the resulting α-hydroxyphosphonates with N, N^{\prime}-thiocarbonyldiimidazole [22] [23] gave $\mathbf{1 0}$ (70%) as a ca. $9: 1$ mixture of diastereoisomers ${ }^{6}$). Deoxygenation of the imidazolylthiocarbonyloxy derivatives $\mathbf{1 0}$ with $\mathrm{Bu}_{3} \mathrm{SnH}$ in refluxing toluene [22] [23] gave the phosphonate 11 (79\%). Signals of the $\mathrm{CH}_{2} \mathrm{PO}_{3} \mathrm{Ph}_{2}$ group appeared in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 11 at 2.87 and $2.65 \mathrm{ppm}(A B X$, $\left.J(\mathrm{P}, \mathrm{H})=19.5 \mathrm{~Hz}, J_{\mathrm{gem}}(\mathrm{H}, \mathrm{H})=15.4 \mathrm{~Hz} ; c f .[24]\right)$ and in the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum at 29.05 $\mathrm{ppm}(d t, J(\mathrm{P}, \mathrm{C})=142.8 \mathrm{~Hz} ; c f .[18][25])$.

Selective hydrogenolysis of 11 with $10 \% \mathrm{Pd} / \mathrm{C}$ in MeOH gave $\mathbf{1 2}$ (62%) and starting material $11(15 \%)$. The reaction was stopped when more polar products were formed (TLC monitoring; see Exper. Part). In the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra, $\mathrm{OH}-\mathrm{C}(6)$ of $\mathbf{1 2}$ gave rise to a typical signal at 61.33 ppm , whilst the signal of $\mathrm{PhCH}_{2} \mathrm{O}-\mathrm{C}(6)$ of 11 appeared at >68.7 ppm . The alcohol 12 was phosphorylated with diphenyl phosphorochloridate in pyridine [26] to give $\mathbf{1 3}(91 \%)$. The ${ }^{31} P$-NMR spectra of $\mathbf{1 3}$ showed two signals, one at +21.52 ppm for $\mathrm{C}-\mathrm{PO}_{3} \mathrm{Ph}_{2}$ and the other at -11.47 ppm for $\mathrm{O}-\mathrm{PO}_{3} \mathrm{Ph}_{2}$.

The intermediate 13 was deprotected first by treatment with H_{2} and $10 \% \mathrm{Pd} / \mathrm{C}$ (hydrogenolysis of the two benzyloxy groups), then with H_{2} and PtO_{2} (hydrogenolysis of the four phenyl ester groups), and finally by heating in $\mathrm{H}_{2} \mathrm{O}$ to 40° (hydrolysis of the formaldehyde-acetal group). The free phosphonic acid 2 was converted to the tetrasodium salt 2a by passage through a short column of Dowex $C C R-2$ (Na^{+}form). The salt 2a was purified by flash chromatography on silylated silica gel. The structure of 2a was in agreement with the MS (FAB: $M+1$ at 427), the ${ }^{\prime} \mathrm{H}-\mathrm{NMR}$ (3.67 and $3.61 \mathrm{ppm}, A B$, $J=12.3, \mathrm{CH}_{2} \mathrm{OH} ; 1.95 \mathrm{ppm}, d, J(\mathrm{P}, \mathrm{H})=18.5, \mathrm{CH}_{2} \mathrm{PO}_{3} \mathrm{Na}_{2}$), the ${ }^{13} \mathrm{C}-\mathrm{NMR}(32.42 \mathrm{ppm}$, $\left.d t, J(\mathrm{P}, \mathrm{C})=128.5, \mathrm{CH}_{2} \mathrm{PO}_{3} \mathrm{Na}_{2}\right)$, and the ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectra $\left(+20.19 \mathrm{ppm}\right.$ for $\mathrm{C}-\mathrm{PO}_{3} \mathrm{Na}_{2}$ and +2.10 ppm for $\mathrm{O}-\mathrm{PO}_{3} \mathrm{Na}_{2} ; c f$. [13] [18] [27] [28]). It was confirmed by elemental analysis.

[^2]

In an analogous way, the isosteric phosphonate analogue 19 (Scheme 3) of the α-D-fructose 2,6-bisphosphate was prepared from the primary nitro compound $\mathbf{6}(\rightarrow \mathbf{1 4}$ $(63 \%) \rightarrow \mathbf{1 5}(63 \%) \rightarrow \mathbf{1 6}(77 \%) \rightarrow \mathbf{1 7}(81 \%) \rightarrow \mathbf{1 8}(88 \%) \rightarrow \mathbf{1 9}(84 \%)$; see Exper. Part). Ozonolysis of the nitronate anion derived from 6 gave 14. Again, Abramov reaction of this aldehyde gave a mixture of α-hydroxyphosphonates, from which the imidazolylthiocarbonyloxy derivatives 15 were obtained as a ca. 4:1 mixture of diastereoisomers ${ }^{7}$). Deoxygenation of $\mathbf{1 5}$ with $\mathrm{Bu}_{3} \mathrm{SnH}$ gave the phosphonate 16. In its ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum, the $\mathrm{CH}_{2} \mathrm{PO}_{3} \mathrm{Ph}_{2}$ group gave rise to signals at 2.87 and $2.70 \mathrm{ppm}(A B X, J(\mathrm{P}, \mathrm{H})=19.0$, $J_{g \mathrm{~cm}}(\mathrm{H}, \mathrm{H})=15.5$); in the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum signals appeared at 30.43 ppm ($d t$, $J(\mathrm{P}, \mathrm{C})=138.6 \mathrm{~Hz})$.

Selective hydrogenolysis of 16 gave 17 and starting material 16 (5\%). Again, the signal of $\mathrm{OH}-\mathrm{C}(6)$ in the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of 17 appeared at a typical position (62.59 ppm; for 16, $\mathrm{C}(6)$ at $>70.51 \mathrm{ppm}$). Phosphorylation of 17 gave 18. Phosphorylation at $\mathrm{C}(6)$ was confirmed by the presence in the ${ }^{13} \mathrm{C}$-NMR spectrum of 18 of two triplets with a P, C coupling ($68.65 \mathrm{ppm}, J(\mathrm{P}, \mathrm{C})=4.0$ and $68.13 \mathrm{ppm} J(\mathrm{P}, \mathrm{C})=6.4$), the other triplet belonging to $\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{OCH}_{3}$. Deprotection of 18 as described for 13 led to the isosteric phosphonate analogue 19 of α-D-fructose 2,6-bisphosphate. The MS (FAB of the free acid: $M+1$ at 339), the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (3.63 and $3.51 \mathrm{ppm}, A B, J=12.0, \mathrm{CH}_{2} \mathrm{OH} ; 2.00$ and $\left.1.80 \mathrm{ppm}, A B X, J(\mathrm{P}, \mathrm{H})=18.6, J_{\mathrm{gem}}(\mathrm{H}, \mathrm{H})=14.7, \mathrm{CH}_{2} \mathrm{PO}_{3} \mathrm{Na}_{2}\right)$, the ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (64.41 $\mathrm{ppm}, d t, J(\mathrm{P}, \mathrm{C})=4.9$, and $64.28 \mathrm{ppm}, d t, J(\mathrm{P}, \mathrm{C})=2.0$ for $\mathrm{C}(6)$ and $\mathrm{CH}_{2} \mathrm{OH} ; 36.11 \mathrm{ppm}$, $\left.d t, J(\mathrm{P}, \mathrm{C})=126.1, \mathrm{CH}_{2} \mathrm{PO}_{3} \mathrm{Na}_{2}\right)$, and the ${ }^{31} \mathrm{P}-\mathrm{NMR}$ spectra $\left(+19.19 \mathrm{ppm}\right.$ for $\mathrm{C}-\mathrm{PO}_{3} \mathrm{Na}_{2}$ and +3.35 ppm for $\mathrm{O}-\mathrm{PO}_{3} \mathrm{Na}_{2}$). The elemental analysis were in agreement with the structure of compound 19.

We thank the Swiss National Science Foundation and Sandoz, Basle, for generous support.

[^3]
Experimental Part

General. See [29]. The silylated silica gel was obtained from Merck, Darmstadt (Germany) (Art. 7719). ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$, and ${ }^{31} \mathrm{P}-\mathrm{NMR}$: Varian-HA-IOO $\left({ }^{13} \mathrm{C}(25.2 \mathrm{MHz})\right.$, Varian-XL-200 $\left({ }^{1} \mathrm{H}(200 \mathrm{MHz}),{ }^{13} \mathrm{C}(50\right.$ $\mathrm{MHz}),{ }^{31} \mathrm{P}(80 \mathrm{MHz})$), or Bruker- $A M-400$ spectrometer (${ }^{1} \mathrm{H}(400 \mathrm{MHz}),{ }^{13} \mathrm{C}(100 \mathrm{MHz}),{ }^{31} \mathrm{P}(160 \mathrm{MHz})$) CDCl_{3} soln. unless otherwise specified; δ 's in ppm relative to TMS (${ }^{i} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$) as internal standard or relative to $\mathrm{H}_{3} \mathrm{PO}_{4}$ (${ }^{31} \mathrm{P}-\mathrm{NMR}$) as external reference (uncorrected). MS: Varian-II2S (EI: 70 eV ; Cl : isobutan) and Varian-7ll spectrometer (FAB, bombardement with $8-\mathrm{keV}$ Xe-atoms, glycerol matrix). $\mathrm{FC}=$ flash chromatography.

3,4,6-Tri-O-benzyl-2-deoxy-1-O-methoxymethyl-2-nitro- β - and- α - D -fructofuranose ($\mathbf{4}$ and 5 , resp.). A mixture of $3 \mathrm{~g}(6.67 \mathrm{mmol})$ of 2,3,5-tri-O-benzyl-1-deoxy-1-nitro- α-D-arabinofuranose (3) $[13], 3 \mathrm{~g}(100 \mathrm{mmol})$ of paraformaldehyde, and $200 \mathrm{mg}(0.6 \mathrm{mmol})$ of $\mathrm{Bu}_{4} \mathrm{NF} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ in 75 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred at r.t. for 24 h . The heterogencous mixture was filtered and the filtrate diluted with 200 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Usual work up gave an oil which was purified by $\mathrm{FC}\left(150 \mathrm{~g}\right.$ of $\mathrm{SiO}_{2}, \mathrm{AcOEt} / \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane $1: 1: 3$). The two products obtained ($2.5 \mathrm{~g}, R_{\mathrm{f}}(\mathrm{AcOEt} /$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane 1:1:3) 0.31 and 0.35) were taken up in 50 ml of THF and treated with $6.3 \mathrm{ml}(5.4 \mathrm{~g}, 71 \mathrm{mmol})$ of formaldehyde dimethyl acetal and 2 g of $\mathrm{P}_{2} \mathrm{O}_{5}(200 \mathrm{mg}$ every 30 min). After stirring at r.t. for 6 h , the mixture was filtered, concentrated to half of the volume, and partitioned between AcOEt and brine. Usual workup afforded an oil which was purified by FC $\left(250 \mathrm{~g}\right.$ of SiO_{2}, toluene/AcOEt $\left.70: 1\right)$ to give $1.85 \mathrm{~g}(53 \%)$ of 4 and $0.45 \mathrm{~g}(13 \%)$ of 5 .

Data of 4. $R_{\mathrm{f}}\left(\mathrm{AcOEt} / \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $\left.1: 1: 3\right) 0.52,[\alpha]_{\mathrm{D}}^{25}=+70.1^{\circ}(c=1.2) .1 \mathrm{R}: 3090 w, 3060 w, 3005 \mathrm{~m}, 2950 \mathrm{~m}$, $2935 m, 2895 m, 2870 m, 1565 s, 1495 m, 1453 m, 1363 m, 1150 s, 1110 s, 1048 s, 1027 s, 950 m, 915 m$. ${ }^{1} H-N M R(200$ $\mathrm{MHz}): 7.36-7.15(m, 15$ arom. H); 4.65-4.52 ($\mathrm{m}, 8 \mathrm{H}$); $4.40(s, 2 \mathrm{H}) ; 4.28,3.96(A B, J=11.2,2 \mathrm{H}) ; 4.03(d d$, $J=4.0,2.0, \mathrm{H}-\mathrm{C}(4)) ; 3.67(d d, J=10.5,4.9 . \mathrm{H}-\mathrm{C}(6)) ; 3.60(d d, J=10.5,6.5, \mathrm{H}-\mathrm{C}(6)) ; 3.29\left(s, \mathrm{CH}_{3} \mathrm{O}\right)$. ${ }^{13} \mathrm{C}-\mathrm{NMR}(50 \mathrm{MHz}): 137.79(\mathrm{~s}) ; 136.99(\mathrm{~s}) ; 136.41(\mathrm{~s}) ; 128.61(\mathrm{~d}) ; 128.41(\mathrm{~d}) ; 128.35(\mathrm{~d}) ; 128.31(\mathrm{~d}) ; 127.92(d)$; $127.71(d) ; 127.66(d) ; 118.15(s) ; 96.57(t) ; 87.50(d) ; 85.29(d) ; 81.26(d) ; 73.36(t) ; 73.02(t) ; 71.76(t) ; 68.74(t) ;$ $67.19(t) ; 55.55(q)$. CI-MS: $492\left(M^{+}-\mathrm{OCH}_{3}\right), 477\left(M^{+}-\mathrm{NO}_{2}\right)$. Anal. calc. for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{NO}_{8}$ (523.58): C $66.53, \mathrm{H}$ 6.35, N 2.68 ; found: C 66.52, H 6.38 , N 2.52 .

Data of 5. $R_{\mathrm{f}}\left(\mathrm{AcOEt} / \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane 1:1:3) $0.47,[\alpha]_{\mathrm{D}}^{25}=-15.0^{\circ}(c=1.0)$. IR: $3090 \mathrm{w}, 3065 \mathrm{w}, 3030 \mathrm{~m}, 3005 \mathrm{~m}$, $2930 \mathrm{~m}, 2890 \mathrm{~m}, 1560 \mathrm{~s}, 1495 \mathrm{~m}, 1453 \mathrm{~m}, 1362 \mathrm{~m}, 1310 \mathrm{w}, 1150 \mathrm{~s}, 1110 \mathrm{~s}, 1045 \mathrm{~s}, 1028 \mathrm{~s}, 915 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}$): $7.37-7.16(m, 15$ arom. H); 4.73-4.41 ($m, 8 \mathrm{H}$); 4.41 (ddd, $J=6.5,6.1,5.5, \mathrm{H}-\mathrm{C}(5)) ; 4.37(d, J=6.1, \mathrm{H}-\mathrm{C}(3))$; 4.16, 4.05 ($A B, J=11.0,2 \mathrm{H}) ; 4.15(t, J=6.1, \mathrm{H}-\mathrm{C}(4)) ; 3.96(d d, J=10.5,6.5, \mathrm{H}-\mathrm{C}(6)) ; 3.75(d d, J=10.5,5.5$, $\mathrm{H}-\mathrm{C}(6)) ; 3.34\left(s, \mathrm{CH}_{3} \mathrm{O}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(50 \mathrm{MHz}): 137.89(s) ; 137.30(s) ; 136.50(s) ; 128.48(d) ; 128.41(d) ; 128.33$ $(d) ; 128.19(d) ; 128.07(d) ; 127.93(d) ; 127.70(d) ; 115.79(s) ; 96.83(t) ; 83.75(d) ; 83.54(d) ; 82.55(d) ; 73.72(t) ;$ $73.43(t) ; 72.70(t) ; 70.30(t) ; 67.44(t) ; 55.64(\mathrm{q}) . \mathrm{Cl}-\mathrm{MS}: 492\left(M^{+}-\mathrm{OCH}_{3}\right), 477\left(M^{+}-\mathrm{NO}_{2}\right)$. Anal. calc. for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{NO}_{8}$ (523.58): C 66.53, H 6.35, N 2.68 ; found: C 66.79, H 6.50, N 2.64.

Reaction of $4 / 5$ with $\mathrm{CH}_{3} \mathrm{NO}_{2}$. To a suspension of $3.10 \mathrm{~g}(129 \mathrm{mmol})$ of NaH in 28 ml of DMSO under $\mathrm{N}_{2}, 3.48$ $\mathrm{ml}(3.94 \mathrm{~g}, 64.6 \mathrm{mmol})$ of $\mathrm{CH}_{3} \mathrm{NO}_{2}$ was added dropwise over 15 min . After the foaming had subsided (30 min), a soln. of $8.47 \mathrm{~g}(16.17 \mathrm{mmol})$ of $\mathbf{4} / 5(4: 1)$ in 28 ml of DMSO was added. The dark mixture was irradiated with a $60-\mathrm{W}$ lamp and stirred for 5.5 h . The soln. was acidified with 3.8 ml of AcOH , stirred for 15 min , and then partitioned between AcOEt and brine. Usual workup afforded an oil which was purified by medium-pressure LC (500 g of $\mathrm{SiO}_{2}, \mathrm{AcOEt} / \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane $1: 15: 15$) to give $3.51 \mathrm{~g}(40 \%)$ of $6,1.05 \mathrm{~g}(12 \%)$ of $7,1.25 \mathrm{~g}(14 \%)$ of $6 / 7$, and $0.431 \mathrm{~g}(6 \%)$ of 8 . A second chromatography on SiO_{2} of the 1.25 g of $6 / 7 \mathrm{gave} 0.76 \mathrm{~g}(9 \%)$ of 6 and $0.43 \mathrm{~g}(5 \%)$ of 7 (overall yield: $4.27 \mathrm{~g}(49 \%)$ of 6 and $1.48 \mathrm{~g}(17 \%)$ of 7).

2,5-Anhydro-3,4,6-tri-O-benzyl-1-O-methoxymethyl-2-C-nitromethyl-D-glucitol (6). $R_{\mathrm{f}}\left(\mathrm{AcOEt} / \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $1: 15: 15) 0.25,[\alpha]_{\mathrm{D}}^{25}=+16.3^{\circ}(c=1.72)$. IR: $3090 \mathrm{w}, 3060 \mathrm{w}, 3000 \mathrm{~m}, 2930 \mathrm{~m}, 2890 \mathrm{~m}, 2870 \mathrm{~m}, 1550 \mathrm{~s}, 1495 \mathrm{~m}$, $1453 m, 1375 m, 1150 s, 1100 s$ (br.), $1070(\mathrm{sh}), 1045 s, 1028 s, 955 m, 910 m .{ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}): 7.37-7.19(m, 15$ arom. H$) ; 4.85,4.76\left(A B, J=11.7, \mathrm{CH}_{2} \mathrm{NO}_{2}\right) ; 4.65,4.61(A B, J=6.5,2 \mathrm{H}) ; 4.604 .50(m, 6 \mathrm{H}) ; 4.30(d d d, J=7.2$, $5.3,3.0, \mathrm{H}-\mathrm{C}(5)) ; 4.18(d, J=1.7, \mathrm{H}-\mathrm{C}(3)) ; 4.10(d d, J=3.0,1.7, \mathrm{H}-\mathrm{C}(4)) ; 3.85,3.74(A B, J=10.5,2 \mathrm{H}-\mathrm{C}(1))$; $3.59(d d, J=10.0,5.3, \mathrm{H}-\mathrm{C}(6)) ; 3.47(d d, J=10.0,7.2, \mathrm{H}-\mathrm{C}(6)) ; 3.32\left(s, \mathrm{CH}_{3} \mathrm{O}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(50 \mathrm{MHz}): 138.00(s)$; $137.34(s) ; 137.23(s) ; 128.47(d) ; 128.44(d) ; 128.33(d) ; 127.94(d) ; 127.77(d) ; 127.68(d) ; 96.93(t) ; 84.99(s) ;$ $84.58(d) ; 84.00(d) ; 82.87(d) ; 75.52(t) ; 73.31(t) ; 72.62(t) ; 71.90(t) ; 70.05(t) ; 66.55(t) ; 55.45(q)$. CI-MS: 537, 414. Anal. calc. for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{NO}_{8}$ (537.60): C 67.02, H 6.56, N 2.61 ; found: C 66.98 , H 6.74, N 2.53 .

2,5-Anhydro-3,4,6-tri-O-benzyl-1-O-methoxymethyl-2-C-nitromethyl-D-mannitol (7). R_{f} ($\mathrm{AcOEt} / \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane $1: 15: 15) 0.18,[\alpha]_{\mathrm{D}}^{25}=-9.5^{\circ}(c=1.0)$. IR: $3090 \mathrm{w}, 3060 \mathrm{w}, 3010 \mathrm{~m}, 2930 \mathrm{~m}, 2890 \mathrm{~m}, 2865 \mathrm{~m}, 1550 \mathrm{~s}, 1495 \mathrm{~m}$, $1453 \mathrm{~m}, 1400 \mathrm{~m}, 1375 \mathrm{~m}, 1365 \mathrm{~m}, 1320 \mathrm{~m}, 1150 \mathrm{~s}, 1110 \mathrm{~s}$ (br), 1075 (sh), $1042 \mathrm{~s}, 1025 \mathrm{~s}, 960 \mathrm{~m}, 913 \mathrm{~m}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (200 $\mathrm{MHz}): 7.37-7.16(\mathrm{~m}, 15$ arom. H); 4.77, 4.66 $(A B, J=12.5,2 \mathrm{H}) ; 4.65,4.62(A B, J=7.0,2 \mathrm{H}) ; 4.53(s, 4 \mathrm{H}) ; 4.45$ $(s, 2 \mathrm{H}) ; 4.22(d d d, J=6.5,5.0,3.8, \mathrm{H}-\mathrm{C}(5)) ; 4.15(d, J=2.5, \mathrm{H}-\mathrm{C}(3)) ; 4.1 \mathrm{I}(d d, J=3.8,2.5, \mathrm{H}-\mathrm{C}(4)) ; 3.8(s, 2$
$\mathrm{H}-\mathrm{C}(1)) ; 3.56(d d, J=10.5,5.0, \mathrm{H}-\mathrm{C}(6)) ; 3.50(d d, J=10.5,6.5, \mathrm{H}-\mathrm{C}(6)) ; 3.33\left(s, \mathrm{CH}_{3} \mathrm{O}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(50 \mathrm{MHz}):$ $138.02(s) ; 137.50(s) ; 137.00(s) ; 128.44(d) ; 128.33(d) ; 128.01(d) ; 127.84(d) ; 127.68(d) ; 96.77(t) ; 86.05(d) ;$ $84.05(s) ; 83.71(d) ; 82.44(d) ; 75.10(t) ; 73.41(t) ; 72.65(t) ; 71.99(t) ; 70.11(t) ; 67.22(t) ; 55.46(q)$. CI-MS: 537, 414. Anal. calc. for $\mathrm{C}_{30} \mathrm{H}_{35} \mathrm{NO}_{8}$ (537.60): C 67.02, H 6.56, N 2.61 ; found: C $66.91, \mathrm{H} 6.45, \mathrm{~N} 2.50$.

2,5-Anhydro-3,4,6-tri-O-benzyl-1-O-methoxymethyl-D-erythro-hex-2-enitol (8). $R_{\mathrm{f}}\left(\mathrm{AcOEt} / \mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $1: 15: 15) 0.1,[\alpha]_{\mathrm{D}}^{25}=+26.0^{\circ}(c=1.36)$. IR: $3090 w, 3060 w, 3030 w, 3000 \mathrm{~m}, 2930 \mathrm{~m}, 2885 \mathrm{~m}, 2865 \mathrm{~m}, 1550 \mathrm{w}, 1495 w$, $1450 \mathrm{~m}, 1360 \mathrm{~m}, 1310 \mathrm{~m}, 1290 \mathrm{~m}, 1180 \mathrm{~m}, 1150 \mathrm{~m}, 1097 \mathrm{~s}, 1037 \mathrm{~s}, 1028$ (sh), $910 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (200 MHz): 7.35-7.23(m, 15 arom. H); 4.85-4.45 ($m, 10 \mathrm{H}$); 4.13, $4.08(A B, J=13.0,2 \mathrm{H}) ; 3.52(d d, J=9.9,5.4, \mathrm{H}-\mathrm{C}(6)) ; 3.34\left(s, \mathrm{CH}_{3} \mathrm{O}\right)$; $3.27(d d, J=9.9,7.2, \mathrm{H}-\mathrm{C}(6)) .{ }^{13} \mathrm{C}-\mathrm{NMR}(50 \mathrm{MHz}): 142.94(s) ; 138.07(s) ; 137.85(s) ; 137.18(s) ; 135.22(s) ;$ $128.36(d) ; 128.31(d) ; 128.09(d) ; 127.98(d) ; 127.93(d) ; 127.70(d) ; 127.65(d) ; 95.69(t) ; 82.50(d) ; 80.27(d) ;$ $73.63(t) ; 73.41(t) ; 69.72(t) ; 69.40(t) ; 58.52(t) ; 55.26(q)$. EI-MS: 477 (I), $446(1), 385(1), 355(1), 323(1), 294(1)$, 263 (4), 249 (2), 233 (3), 217 (3), 187 (3), 181 (23), 163 (8), 91 (100). Anal. calc. for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{O}_{6}$ (476.58): $\mathrm{C} 73.08, \mathrm{H}$ 6.77; found: C 73.14, H 6.74.

Anomerization of Pure 6 and 7 by $\mathrm{Bu}_{4} \mathrm{NF} \cdot 3 \mathrm{H}_{2} \mathrm{O}$. A) From 6 in THF. A soln. of $100 \mathrm{mg}(0.186 \mathrm{mmol})$ of $6,12 \mathrm{mg}$ $(0.038 \mathrm{mmol})$ of $\mathrm{Bu}_{4} \mathrm{NF} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ in 1 ml of THF was stirred for 14 h at r.t. Usual workup with AcOEt and brine afforded an oil which was purified by $\mathrm{FC}\left(10 \mathrm{~g}\right.$ of $\mathrm{SiO}_{2}, \mathrm{AcOEt} /$ hexane $\left.1: 3\right)$ to give $94 \mathrm{mg}(94 \%)$ of a $45: 55$ mixture of $6 / 7$, ratio determined by the integrals of the signals of $\mathrm{H}-\mathrm{C}(1)$ at 3.85 and 3.74 ppm ($A B$ syst.) for 6 and at 3.8 $\mathrm{ppm}(s)$ for 7.
B) From 7 in THF. Similarly, treatment of $100 \mathrm{mg}(0.186 \mathrm{mmol})$ of 7 gave, after chromatography, $95 \mathrm{mg}(95 \%)$ of a $44: 56$ mixture of $6 / 7$.
C) From 7 in MeOH . Similarly, treatment of $100 \mathrm{mg}(0.186 \mathrm{mmol})$ of 7 in 1 ml of MeOH gave, after chromatography, $94 \mathrm{mg}(94 \%)$ of $6 / 7(65: 35)$.

2,5-Anhydro-3,4,6-tri-O-benzyl-2-C-methoxymethoxymethyl-D-glucose (9). To 18.6 ml of a 0.4 m soln. of NaOMe in $\mathrm{MeOH}, 4 \mathrm{~g}(7.44 \mathrm{mmol})$ of 7 was added. The mixture was stirred for 15 min at r.t., then cooled to -78°, and treated with O_{3} until 7 had disappeared (TLC monitoring). The soln. was purged with N_{2} and warmed to r.t. After concentration to half of the volume, the residue was partitioned between AcOEt and brine. Usual workup followed by chromatography (400 g of SiO_{2}, $\mathrm{AcOEt} /$ hexane $1: 3$) gave $2.78 \mathrm{~g}\left(74 \%\right.$) of $9 . R_{\mathrm{f}}$ ($\mathrm{AcOEt} / \mathrm{hexane} 1: 2$) $0.33,[\alpha]_{D}^{25}=+24.6^{\circ}(c=1.32)$. IR: $3080 w, 3060 w, 3025 w, 3000 m, 2930 m, 2885 m, 2865 m, 1735 s, 1493 m, 1452 m$, $1363 m, 1308 w, 1148 s, 1090 s\left(b r\right.$.), $1043 s, 1028 s, 970 m, 913 m, 690 m$. ${ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}): 9.64(d, J=0.6, \mathrm{CHO})$; $7.35-7.15(\mathrm{~m}, 15$ arom. H); 4.61-4.35 (m, 9 H$) ; 4.17-4.13(\mathrm{~m}, 2 \mathrm{H}) ; 3.90(d, J=10.6,1 \mathrm{H}) ; 3.76(d d, J=10.6,0.6$, $1 \mathrm{H}) ; 3.72(d d, J=10.1,5.0, \mathrm{H}-\mathrm{C}(6)) ; 3.64(d d, J=10.1,6.2, \mathrm{H}-\mathrm{C}(6)) ; 3.31\left(s, \mathrm{CH}_{3} \mathrm{O}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(50 \mathrm{MHz})$: $200.55(d) ; 138.03(s) ; 137.52(s) ; 136.87(s) ; 128.41(d) ; 128.31(d) ; 127.95(d) ; 127.80(d) ; 127.67(d) ; 96.67(t) ;$ $90.00(s) ; 86.81(d) ; 83.59(d) ; 82.93(d) ; 73.41(t) ; 72.39(t) ; 71.98(t) ; 69.86(t) ; 67.27(t) ; 55.33(q)$. EI-MS: 476 (1), 461 (1), 415 (1), 370 (1), 325 (1), 308 (1), 295 (1), 279 (1), 247 (1), 237 (1), 219 (1), 217 (1), 181 (5), 145 (3), 126 (1), 111 (1), 108 (2), 107 (3), 106 (4), 105 (5), 98 (1), 97 (2), 92 (9), 91 (100), 77 (5), 45 (16). Anal. calc. for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{7}$ (506.62): C 71.12, H 6.76; found: C 70.92, H 6.95.

Diphenyl [2,5-Anhydro-3,4,6-tri-O-benzyl-1-O-(imidazol-I-yl)thiocarbonyl-2-C-methoxymethoxymethyl-D/ L-glycero-D-glucitol-I-yl phosphonate ($\mathbf{1 0}$). Under N_{2}, a mixture of $3 \mathrm{~g}(5.92 \mathrm{mmol})$ of $9,4.61 \mathrm{ml}(5.61 \mathrm{~g}, 24 \mathrm{mmol})$ of diphenyl phosphite and $247 \mu \mathrm{l}(179 \mathrm{mg}, 1.77 \mathrm{mmol})$ of $\mathrm{Et}_{3} \mathrm{~N}$ was stirred at r.t. for 1 h . Chromatography of the mixture (500 g of SiO_{2}, $\mathrm{AcOEt} /$ hexane $1: 2$) gave $3.55 \mathrm{~g}(81 \%)$ of the α-hydroxyphosphonates. These products were taken up in 25 ml of THF, and $1.7 \mathrm{~g}(9.58 \mathrm{mmol})$ of $N_{3} N^{\prime}$-thiocarbonyldiimidazole was added. The mixture was stirred under N_{2} at r.t. for 4 h , then concentrated i.v., and the product isolated by $\mathrm{FC}(300 \mathrm{~g} \mathrm{of} \mathrm{SiO} 2$, $\mathrm{AcOEt} / \mathrm{hexane}$ $1: 2): 3.54 \mathrm{~g}\left(70 \%\right.$ from 9) of 10 as a ca. $9: 1$ mixture of diastereoisomers. R_{f} (AcOEt/hexane $1: 1$) 0.38 , $[\alpha]_{\mathrm{D}}^{25}=-20.4^{\circ}(c=0.99)$. IR: $3160 w, 3135 w, 3080 w, 3060 w, 3000 m, 2930 m, 2895 m, 2865 m, 2825 w, 1590 m, 1488 s$, $1466 s, 1452 \mathrm{~m}, 1390 \mathrm{~s}, 1360 \mathrm{~m}, 1330 \mathrm{~s}, 1285 \mathrm{~s}$, 1180 s , 1160 s , 1105 s , $1095 \mathrm{~s}, 1070 \mathrm{~s}, 1040 \mathrm{~s}, 1026 \mathrm{~s}, 1008 \mathrm{~s}, 950 \mathrm{~s}, 937 \mathrm{~s}, 914$ (sh), $835 w .{ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}): 8.48(s, 0.15 \mathrm{H}) ; 8.16(s, 0.85 \mathrm{H}) ; 7.73(s, 0.15 \mathrm{H}) ; 7.39(s, 0.85 \mathrm{H}) ; 7.38-6.86(m$, $26 \mathrm{H}) ; 4.66-3.91(m, 14 \mathrm{H}) ; 3.57(d, J=4.2,0.3 \mathrm{H}) ; 3.43(d, J=4.6,1.7 \mathrm{H}) ; 3.29(s, 0.45 \mathrm{H}) ; 3.26(s, 2.55 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}(50 \mathrm{MHz}): 182.93(s) ; 182.82(s) ; 150.28(s d, J(\mathrm{P}, \mathrm{C})=9.4) ; 149.96(s d, J(\mathrm{P}, \mathrm{C})=9.4) ; 137.90(s) ; 137.58$ $(s) ; 137.2 \mathrm{I}(s) ; 137.03(s) ; 130.0-118.13(d) ; 96.95(t) ; 86.48(d d, J(\mathrm{P}, \mathrm{C})=6.1) ; 86.30(s d, J(\mathrm{P}, \mathrm{C})=2.4) ; 83.95(d) ;$ $81.62(d) ; 76.79(d d, J(\mathrm{P}, \mathrm{C})=166.9) ; 73.12(t) ; 72.98(t) ; 72.20(t) ; 70.08(t) ; 68.11(d t, J(\mathrm{P}, \mathrm{C})=1.8) ; 55.52(q)$; minor isomer: $83.13(d) ; 81.15(d) ; 73.37(t) ; 69.25(t) ; 68.23(t) .{ }^{31} \mathrm{P}-\mathrm{NMR}(80 \mathrm{MHz}) ;+8.81(0.9 \mathrm{P}) ;+8.80(0.1 \mathrm{P})$. Anal. calc. for $\mathrm{C}_{46} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{PS}(850.93)$: C 64.92 , H 5.57, N 3.29, P 3.63, S 3.76; found: C 65.18, H 5.51, N 3.27, P 3.40, S 3.53.

Diphenyl (2,5-Anhydro-3,4,6-tri-O-benzyl-1-deoxy-2-C-methoxymethoxymethyl-D-glucitol-1-yl)phosphonate (11). A mixture of $3.5 \mathrm{~g}(4.11 \mathrm{mmol})$ of 10 and 80 ml of dry toluene was added dropwise over 75 min to a stirred refluxing soln. of 200 ml of toluene and 4.35 ml of $\mathrm{Bu}_{3} \mathrm{SnH}(4.78 \mathrm{~g}, 16.4 \mathrm{mmol})$ under N_{2}. After 4 h , (TLC:
reduction complete), the soln. was cooled and concentrated i.v. The residue was purified by $\mathrm{FC}\left(300 \mathrm{~g}\right.$ of SiO_{2}, $\mathrm{AcOEt} /$ hexane $1: 2): 2.35 \mathrm{~g}(79 \%)$ of 11 as an oil. $R_{\mathrm{f}}(\mathrm{AcOEt} /$ hexane $1: 2) 0.22,[\alpha]_{\mathrm{D}}^{25}=-2.4^{\circ}(c=1.45)$. IR: $3085 w$, $3065 w, 3000 \mathrm{~m}, 2930 \mathrm{~m}, 2890 \mathrm{~m}, 2870 \mathrm{~m}, 2825 \mathrm{w}, 1593 \mathrm{~m}, 1490 \mathrm{~s}, 1453 \mathrm{~m}, 1390 \mathrm{w}, 1268 \mathrm{~s}, 1186 \mathrm{~s}, 1160 \mathrm{~s}, 1150 \mathrm{~s}, 1107 \mathrm{~s}$, $1072 \mathrm{~s}, 1040 \mathrm{~s}, 1038 \mathrm{~s}, 1009 \mathrm{~m}, 930 \mathrm{~s}$ (br.), $903 \mathrm{~m}, 690 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz): $7.35-7.09$ ($m, 25$ arom. H); 4.67-4.45 $(m, 8 \mathrm{H}) ; 4.20(d d d, J=6.2,5.2,4.3, \mathrm{H}-\mathrm{C}(5)) ; 4.16(d, J=2.6, \mathrm{H}-\mathrm{C}(3)) ; 4.12(d d, J=4.3,2.6, \mathrm{H}-\mathrm{C}(4)) ; 4.03,3.86$ $(A B, J=10.1,2 \mathrm{H}) ; 3.60(d d, J=10.0,5.2, \mathrm{H}-\mathrm{C}(6)) ; 3.52(d d, J=10.0,6.2, \mathrm{H}-\mathrm{C}(6)) ; 3.32\left(s, \mathrm{CH}_{3} \mathrm{O}\right) ; 2.87(d d$, $J(\mathrm{P}, \mathrm{H})=19.5, J=15.4, \mathrm{H}-\mathrm{C}(1)) ; 2.65(d d, J(\mathrm{P}, \mathrm{H})=19.5, J=15.4, \mathrm{H}-\mathrm{C}(\mathrm{I})) .{ }^{13} \mathrm{C}-\mathrm{NMR}(50 \mathrm{MHz}): 150.63(s) ;$ $150.44(s) ; 150.36(s) ; 138.16(s) ; 137.80(s) ; 137.75(s) ; 129.66(d) ; 129.49(d) ; 128.32(d) ; 128.28(d) ; 128.23(d) ;$ $127.82(d) ; 127.71(d) ; 127.58(d) ; 127.48(d) ; 124.75(d) ; 120.81(d) ; 120.72(d) ; 120.63(d) ; 120.54(d) ; 96.82(t) ;$ $85.70(d d, J(\mathrm{P}, \mathrm{C})=6.7) ; 84.58(s) ; 84.41(d) ; 81.56(d) ; 73.24(t) ; 72.13(t) ; 71.89(t) ; 70.63(t) ; 68.71(t) ; 55.36(q) ;$ $29.05(d t, J(\mathrm{P}, \mathrm{C})=142.8) .{ }^{31} \mathrm{P}-\mathrm{NMR}(80 \mathrm{MHz}):+22.00$. Anal. calc. for $\mathrm{C}_{42} \mathrm{H}_{45} \mathrm{O}_{9} \mathrm{P}(724.82): \mathrm{C} 69.60, \mathrm{H} 6.26, \mathrm{P}$ 4.27; found: C 69.36, H 6.22, P 4.15.

Diphenyl (2,5-Anhydro-3,4-di-O-benzyl-1-deoxy-2-C-methoxymethoxymethyl-D-glucitol-1-yl)phosphonate (12). A soln of $2 \mathrm{~g}(2.76 \mathrm{mmol})$ of 11 in 100 ml of MeOH was treated with 200 mg of $10 \% \mathrm{Pd} / \mathrm{C}$ and hydrogenolysed under normal pressure until TLC showed the appearance of small amount of didebenzylated products with R_{f} (AcOEt/hexane 1:1) 0.28 and 0.05 . Filtration, concentration i.v., and chromatography (200 g of SiO_{2}, $\mathrm{AcOEt} / \mathrm{hexane} 1: 2$): $306 \mathrm{mg}(15 \%)$ of 11 and $1.09 \mathrm{~g}(62 \%)$ of 12 as an oil. R_{f} (AcOEt/hexane 1:1) 0.50 , $[\alpha]_{D}^{25}=-13.8^{\circ}(c=1.47)$. IR: $3380 \mathrm{~m}(\mathrm{br}$. $), 3065 w, 3000 \mathrm{~m}, 2935 \mathrm{~m}, 2890 \mathrm{~m}, 2825 \mathrm{w}, 1592 \mathrm{~s}, 1490 \mathrm{~s}, 1453 \mathrm{~m}, 1400 \mathrm{~m}$, $1362 \mathrm{~m}, 1310 \mathrm{~m}, 1255 \mathrm{~s}, 1184 s, 1160 \mathrm{~s}, 1110 \mathrm{~s}, 1072 \mathrm{~s}, 1043 \mathrm{~s}, 1028 \mathrm{~s}, 1010 \mathrm{~s}, 945 \mathrm{~s}$ (br.), $903 \mathrm{~s}, 848 \mathrm{w}, 830 \mathrm{w}, 685 \mathrm{~m}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}): 7.38-7.09(\mathrm{~m}, 20$ arom. H); $4.63(\mathrm{~s}, 6 \mathrm{H}) ; 4.44(d d, J=6.8,5.6, \mathrm{H}-\mathrm{C}(4)) ; 4.26(d, J=5.6$, $\mathrm{H}-\mathrm{C}(3)) ; 4.50-4.20\left(m, 1 \mathrm{H}\right.$, exchange with $\left.\mathrm{D}_{2} \mathrm{O}\right) ; 3.98(d d d, J=6.8,3.0,2.3, \mathrm{H}-\mathrm{C}(5)) ; 3.74(d d, J=12.6,2.3$, $\mathrm{H}-\mathrm{C}(6)) ; 3.74(\mathrm{~s}, 2 \mathrm{H}) ; 3.60-3.53(\mathrm{~m}, \mathrm{H}-\mathrm{C}(6)) ; 3.32\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{O}\right) ; 2.95(d d, J(\mathrm{P}, \mathrm{H})=19.6, J=15.8, \mathrm{H}-\mathrm{C}(1)) ; 2.48$ $(d d, J(\mathrm{P}, \mathrm{H})=19.6, J=15.8, \mathrm{H}-\mathrm{C}(1)) .{ }^{13} \mathrm{C}-\mathrm{NMR}(50 \mathrm{MHz}) ; 150.31(s) ; 150.26(s) ; 137.91(s) ; 137.72(s) ; 129.62$ $(d) ; 129.49(d) ; 128.33(d) ; 127.69(d) ; 127.54(d) ; 124.98(d) ; 120.73(d) ; 120.64(d) ; 120.60(d) ; 120.56(d) ; 96.71$ $(t) ; 86.37(d d, J(\mathrm{P}, \mathrm{C})=6.7) ; 82.15(d) ; 81.92(s) ; 81.82(d) ; 72.73(t) ; 72.50(t) ; 70.84(d t, J(\mathrm{P}, \mathrm{C})=3.2) ; 61.33(t) ;$ $55.39(q) ; 29.92(d t, J(\mathrm{P}, \mathrm{C})=145.6) .{ }^{31} \mathrm{P}-\mathrm{NMR}(80 \mathrm{MHz}):+23.30$. Anal. calc. for $\mathrm{C}_{35} \mathrm{H}_{39} \mathrm{O}_{9} \mathrm{P}(634.68): \mathrm{C} 66.23, \mathrm{H}$ 6.19, P 4.87; found: C 66.09, H 6.21, P 4.71.

2,5-Anhydro-3,4-di-O-benzyl-1-deoxy-2-C-methoxymethoxymethyl-1-(diphenoxyphosphoryl)-D-glucitol 6(Diphenyl Phosphate) (13). To a soln. of $400 \mathrm{mg}(0.63 \mathrm{mmol})$ of 12 in 4 ml of abs. pyridine under N_{2} at $0^{\circ}, 195 \mu \mathrm{l}$ ($254 \mathrm{mg}, 0.945 \mathrm{mmol}$) of diphenyl phosphorochloridate was added. This mixture was stirred at r.t. for 30 min and then partitioned between AcOEt and brine. Usual workup afforded a residue which was purified by chromatography (50 g of $\mathrm{SiO}_{2}, \mathrm{AcOEt} /$ hexane $1: 2$): $496 \mathrm{mg}(91 \%)$ of 13 as an oil. $R_{\mathrm{f}}(\mathrm{AcOEt} /$ hexane $1: 1) 0.56,[\alpha]_{\mathrm{D}}^{25}=+1.5^{\circ}$ ($c=1.13$). IR: $3065 m, 3000 m, 2940 \mathrm{~m}, 2890 \mathrm{~m}, 1590 s, 1488 s, 1453 \mathrm{~m}, 1393 w, 1365 w, 1280 s$ (br.), 1184s, $1160 \mathrm{~s}, 1100 \mathrm{~s}$ (br.), $1070 \mathrm{~s}, 1040 \mathrm{~s}, 1025 \mathrm{~s}, 1010 \mathrm{~s}, 950 \mathrm{~s}$ (br.), $903 \mathrm{~s}, 825 \mathrm{w}, 685 \mathrm{~m}$. ${ }^{\mathrm{H}} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}): 7.33-7.07$ ($\mathrm{m}, 30 \mathrm{arom} . \mathrm{H}$); $4.62-4.44(m, 6 \mathrm{H}) ; 4.26-4.23(m, 3 \mathrm{H}) ; 4.12(d, J=1.9 . \mathrm{H}-\mathrm{C}(3)) ; 4.11-4.07(m, 1 \mathrm{H}) ; 4.00,3.81(A B, J=10.2,2$ $\mathrm{H}) ; 3.26\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{O}\right) ; 2.83(d d, J(\mathrm{P}, \mathrm{H})=19.6, J=15.3, \mathrm{H}-\mathrm{C}(1)) ; 2.61(d d, J(\mathrm{P}, \mathrm{H})=19.6, J=15.3, \mathrm{H}-\mathrm{C}(1))$. ${ }^{13} \mathrm{C}$-NMR (50 MHz): $150.46(\mathrm{~s}) ; 150.39(\mathrm{~s}) ; 150.32(\mathrm{~s}) ; 150.28(\mathrm{~s}) ; 137.37(\mathrm{~s}) ; 129.68(\mathrm{~d}) ; 129.53(\mathrm{~d}) ; 128.38(\mathrm{~d})$; $128.32(d) ; 127.82(d) ; 127.72(d) ; 127.52(d) ; 125.28(d) ; 124.79(d) ; 120.67(d) ; 120.57(d) ; 120.46(d) ; 120.01(d) ;$ $119.92(d) ; 96.78(t) ; 85.52(s) ; 85.09(d d, J(\mathrm{P}, \mathrm{C})=6.2) ; 83.99(d) ; 81.04(d d, J(\mathrm{P}, \mathrm{C})=8.5) ; 72.32(t) ; 72.02(t) ;$ $68.57(t) ; 68.17(d t, J(\mathrm{P}, \mathrm{C})=6.0) ; 55.32(q) ; 28.92(d t, J(\mathrm{P}, \mathrm{C})=142.1) .{ }^{31} \mathrm{P}-\mathrm{NMR}(80 \mathrm{MHz}):+21.52 ;-11.47$. Anal. calc. for $\mathrm{C}_{47} \mathrm{H}_{48} \mathrm{O}_{12} \mathrm{P}_{2}$ (866.86): C 65.12, H 5.58, P 7.14; found: C 65.14, H 5.75, P 7.32.

Tetrasodium 2,5-Anhydro-l-deoxy-2-C-hydroxymethyl-1-phosphonato-D-glucitol 6-Phosphate (2a). A soln. of 2.5 g (2.88 mmol) of 13 in 100 ml of MeOH was treated with 500 mg of $10 \% \mathrm{Pd} / \mathrm{C}$ and hydrogenolysed under normal pressure until the disappearance of the product with R_{f} ($\mathrm{AcOE} 1 /$ hexane $1: 1$) $0.25(44 \mathrm{~h})$. After filtration, 1.6 g of PtO_{2} was added and the hydrogenolysis was continued until TLC showed the disappearance of UV-active products and the presence of a product with $R_{\mathrm{f}}\left(\mathrm{PrOH} / \mathrm{NH}_{3} / \mathrm{H}_{2} \mathrm{O} 4: 3: 1\right) 0.53$ (24 h). After filtration and concentration i.v., the residue was taken up in 20 ml of $\mathrm{H}_{2} \mathrm{O}$ and heated to 50° for 6 h . The soln. was diluted with 50 ml of $\mathrm{H}_{2} \mathrm{O}$ and washed with AcOEt ($2 \times 2 \mathrm{ml}$). The aq. phase was treated with Dowex CCR-2 (Na^{+}form) and lyophilised. The product was purified by $\mathrm{FC}\left(100 \mathrm{~g}\right.$ of SiO_{2} silylated, 150 ml of $\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O} 3: 1$ then 300 ml of $\left.\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O} 2: 1\right)$, concentrated i.v., lyophilised, and dried i.v. over $\mathrm{P}_{2} \mathrm{O}_{5}: 770 \mathrm{mg}(63 \%)$ of 2a. $R_{\mathrm{f}}\left(\mathrm{PrOH} / \mathrm{NH}_{3} / \mathrm{H}_{2} \mathrm{O}\right.$ $4: 3: 1) 0.25,[\alpha]_{\mathrm{D}}^{25}=+9.3^{\circ}\left(c=0.97 \mathrm{H}_{2} \mathrm{O}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): 4.09(t, J=6.5,1 \mathrm{H}) ; 4.01(d, J=5.9$, $\mathrm{H}-\mathrm{C}(3)) ; 4.00-3.80(m, 3 \mathrm{H}) ; 3.67,3.61\left(A B, J=12.3, \mathrm{CH}_{2} \mathrm{OH}\right) ; 1.95(d, J(\mathrm{P}, \mathrm{H})=18.5,2 \mathrm{H}-\mathrm{C}(1)) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(100 \mathrm{MHZ}, \mathrm{D}_{2} \mathrm{O}\right): 85.07(s) ; 79.91(d d, J(\mathrm{P}, \mathrm{C})=7.0) ; 79.70(d) ; 77.14(d) ; 65.20(d t, J(\mathrm{P}, \mathrm{C})=5.1) ; 64.97(t) ; 32.42$ $(d t, J(\mathrm{P}, \mathrm{C})=128.5) .{ }^{31} \mathrm{P}-\mathrm{NMR}\left(80 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right):+20.19 ;+2.10$. FAB-MS: $427(M+1), 405(M+2-\mathrm{Na}), 387$ $\left(M+2-\mathrm{Na}-\mathrm{H}_{2} \mathrm{O}\right), 383(M+3-2 \mathrm{Na}), 365\left(M+3-2 \mathrm{Na}-\mathrm{H}_{2} \mathrm{O}\right), 361(M+4-3 \mathrm{Na})$. Anal. calc. for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{Na}_{4} \mathrm{O}_{11} \mathrm{P}_{2}$ (426.08): C 19.73, H 2.84, P 14.53; found: C 19.60, H 3.12, P 14.30.

2,5-Anhydro-3,4,6-tri-O-benzyl-2-C-methoxymethoxymethyl-D-mannose (14) was prepared, as described for 9 (see above), from 4.65 ml of a 0.4 m soln. of NaOMe in MeOH and $\mathrm{g}(1.86 \mathrm{mmol})$ of 6 . Chromatography (100 g of $\mathrm{SiO}_{2}, \mathrm{AcOEt} /$ hexane $1: 3$) gave $595 \mathrm{mg}(63 \%)$ of 14. $R_{\mathrm{f}}(\mathrm{AcOEt} /$ hexane $1: 2) 0.35,[\alpha]_{\mathrm{D}}^{25}=+34.7^{\circ}(c=1.24)$. IR: $3090 \mathrm{w}, 3060 \mathrm{w}, 3030 \mathrm{w}, 3000 \mathrm{~m}, 2930 \mathrm{~m}, 2870 \mathrm{~m}, 2825 \mathrm{w}, 1730 \mathrm{~s}, 1496 \mathrm{w}, 1453 \mathrm{~m}, 1400 \mathrm{w}, 1363 \mathrm{~m}, 1310 \mathrm{w}, 1150 \mathrm{~m}, 1100 \mathrm{~s}$ (br.), 1073s, $1042 s, 1028$ (sh), $948 m, 913 m$. ${ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}): 9.71(d, J=1.1, \mathrm{CHO}) ; 7.34-7.17(\mathrm{~m}, 15$ arom. $\mathrm{H}) ; 4.60-4.32(\mathrm{~m}, 9 \mathrm{H}) ; 4.15(d, J=1.8, \mathrm{H}-\mathrm{C}(3)) ; 4.03(t, J=1.8, \mathrm{H}-\mathrm{C}(4)) ; 4.00(d, J=10.7, \mathrm{H}-\mathrm{C}(1)) ; 3.78(d d$, $J=10.7,1.1, \mathrm{H}-\mathrm{C}(1)) ; 3.67(d d, J=9.8,5.7, \mathrm{H}-\mathrm{C}(6)) ; 3.58(d d, J=9.8,7.5, \mathrm{H}-\mathrm{C}(6)) ; 3.27\left(s, \mathrm{CH}_{3} \mathrm{O}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $(50 \mathrm{MHz}): 203.77(d) ; 138.07(s) ; 137.18(s) ; 137.08(s) ; 128.46(d) ; 128.38(d) ; 128.30(d) ; 127.98(d) ; 127.81(d) ;$ $127.73(d) ; 127.69(d) ; 127.60(d) ; 96.63(t) ; 91.64(s) ; 84.30(d) ; 81.87(d) ; 73.24(t) ; 72.71(t) ; 71.21(t) ; 69.97(t) ;$ $68.91(t) ; 55.25(q)$ EI-MS: $506(1), 476(1), 461(1), 415(1), 383(1), 325(1), 263(1), 235(1), 219(1), 187(1), 182(1)$, $181(8), 175$ (1), 168 (1), 157 (1), 146 (1), 145 (7), 129 (1), 127 (1), 126 (2), 107 (1), 92 (9), 91 (100), 84 (5), 45 (11). Anal. calc. for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{7}$ (506.62): C 71.12, H 6.76; found: C 70.95, H 6.64 .

Diphenyl [2,5-Anhydro-3,4,6-tri-O-benzyl-1-O-(imidazol-l-yl)thiocarbonyl-2-C-methoxymethoxymethyl- D / L-glycero-D-mannitol-l-yl/phosphonate (15). Under N_{2}, a mixture of $150 \mathrm{mg}(0.296 \mathrm{mmol})$ of $14,230 \mu \mathrm{l}(280 \mathrm{mg}, 1.2$ mmol) of diphenylphosphite and $4.2 \mu \mathrm{l}(3 \mathrm{mg}, 0.03 \mathrm{mmol})$ of $\mathrm{Et}_{3} \mathrm{~N}$ was stirred at r.t. for 12 h . Chromatography of the mixture $\left(50 \mathrm{~g}\right.$ of $\mathrm{SiO}_{2}, \mathrm{AcOEl} /$ hexane $1: 2$) gave $162 \mathrm{mg}(74 \%)$ of the α-hydroxyphosphonates. These products were taken up in 1 ml of THF, and $78 \mathrm{mg}(0.437 \mathrm{mmol})$ of N, N^{\prime}-thiocarbonyldiinidazole was added. The reaction mixture was stirred under N_{2} for 2 h , then concentrated i.v., and the residue was purified by $\mathrm{FC}\left(20 \mathrm{~g}\right.$ of SiO_{2}, AcOEt/hexane $1: 2$): $158 \mathrm{mg}\left(63 \%\right.$ from 14) of 15 as a ca. $4: 1$ mixture of diastereoisomers. R_{f} ($\mathrm{AcOEt} /$ hexane $1: 1$) $0.30,[\alpha]_{\mathrm{D}}^{25}=-8.7^{\circ}(c=0.97)$ IR: $3160 \mathrm{w}, 3135 \mathrm{w}, 3065 \mathrm{w}, 3000 \mathrm{~m}, 2930 \mathrm{~m}, 2880 \mathrm{~m}, 2870 \mathrm{~m}, 2830 \mathrm{w}, 1590 \mathrm{~m}, 1532 \mathrm{w}$, $1488 s, 1468 s, 1453 s, 1390 s, 1360 \mathrm{~m}, 1330 \mathrm{~s}, 1288 \mathrm{~s}, 1180 \mathrm{~s}, 1 \mathrm{I} 60 \mathrm{~s}, 1105 \mathrm{~s}, 1093 \mathrm{~s}, 1072 \mathrm{~s}, 1043 \mathrm{~s}, 1027 \mathrm{~s}, 1010 \mathrm{~s}, 955 \mathrm{~s}, 940 \mathrm{~s}$, $915(\mathrm{sh}), 905(\mathrm{sh}), 830 w .{ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}): 8.35(t, J=1.0,0.2 \mathrm{H}) ; 8.30(t, J=1.0,0.8 \mathrm{H}) ; 7.65(d d, J=1.7,1.2$, $0.2 \mathrm{H}) ; 7.55(t, J=1.6,0.8 \mathrm{H}) ; 7.34-6.92(\mathrm{~m}, 26 \mathrm{H}) ; 4.88-4.84(\mathrm{~m}, 1 \mathrm{H}) ; 4.664 .00(\mathrm{~m}, 11 \mathrm{H}) ; 3.93(\mathrm{~s}, 2 \mathrm{H}) ; 3.51-3.34$ $(m, 2 \mathrm{H}) ; 3.24(\mathrm{~s}, 2.4 \mathrm{H}) ; 3.20(s, 0.6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(50 \mathrm{MHz}): 183.20(d) ; 183.06(d) ; 150.18(s d, J(\mathrm{P}, \mathrm{C})=9.4)$; $149.96(s d, J(\mathrm{P}, \mathrm{C})=8.9) ; 138.05-118.26(d+s) ; 97.24(t) ; 85.90(s d, J(\mathrm{P}, \mathrm{C})=4.2) ; 84.90(d d, J(\mathrm{P}, \mathrm{C})=2.8)$; $84.51(d) ; 81.60(d) ; 77.55(d d, J(\mathrm{P}, \mathrm{C})=165) ; 73.25(t) ; 73.06(t) ; 72.07(t) ; 69.97(t) ; 67.52(t d, J(\mathrm{P}, \mathrm{C})=3.6) ;$ $55.45(q) ;$ minor isomer: $97.15(t) ; 85.77(s) ; 84.22(d) ; 81.39(d) ; 72.35(t) ; 70.13(t) ; 55.33(q) .{ }^{31} \mathrm{P}-\mathrm{NMR}(80$ $\mathrm{MHz}):+8.69(0.83 \mathrm{P}) ;+7.87(0.17 \mathrm{P})$. Anal. calc. for $\mathrm{C}_{46} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{PS}$ (850.93): C 64.92, H 5.57, N 3.29, P 3.63, S 3.76; found: C 65.12, H 5.56, N 3.14, P 3.49, S 3.65.

Diphenyl (2,5-Anhydro-3,4,6-tri-O-benzyl-1-deoxy-2-C-methoxymethoxymethyl-D-mannitol-l-yl)phosphonate (16). A mixture of $500 \mathrm{mg}(0.58 \mathrm{mmol})$ of 15 in 10 ml of dry toluene was added dropwise, over 75 min , to a stirred refluxing soln. of 25 ml of toluene and $560 \mu \mathrm{l}$ of $\mathrm{Bu}_{3} \mathrm{SnH}(613 \mathrm{mg}, 2.11 \mathrm{mmol})$ under N_{2}. When TLC indicated the reaction was complete (2 h), the soln. was cooled and then concentrated $i . v$. The residue was purified by FC (50 g of SiO_{2}, $\mathrm{AcOEt} /$ hexane $1: 2$): $323 \mathrm{mg}(77 \%)$ of $16 . R_{\mathrm{f}}$ (AcOEt/hexane 1:2) $0.24,[\alpha]_{\mathrm{D}}^{25}=+18.1^{\circ}(c=1.06)$. IR: 3080 w , $3060 \mathrm{w}, 3000 \mathrm{w}, 2930 \mathrm{~m}, 2885 \mathrm{~m}, 2865 \mathrm{~m}, 1592 \mathrm{~m}, 1490 \mathrm{~s}, 1452 \mathrm{~m}, 1394 \mathrm{~m}, 1362 \mathrm{~m}, 1308 \mathrm{~m}, 1268 \mathrm{~s}, 1183 \mathrm{~s}, 1160 \mathrm{~s}, 1143 \mathrm{~s}$, $1100 s, 1070 \mathrm{~s}, 1044 \mathrm{~s}, 1027 \mathrm{~s}, 1007 \mathrm{~s}, 935 \mathrm{~s}$ (br.), $902 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}(200 \mathrm{MHz}): 7.30-7.11(\mathrm{~m}, 25$ arom. H); $4.64(\mathrm{~s}, 2 \mathrm{H})$; $4.56(s, 2 \mathrm{H}) ; 4.53(s, 2 \mathrm{H}) ; 4.51(s, 2 \mathrm{H}) ; 4.45(d, J=2.4, \mathrm{H}-\mathrm{C}(3)) ; 4.31(d d d, J=6.4,5.1,3.6, \mathrm{H}-\mathrm{C}(5)) ; 4.10(d d$, $J=3.6,2.4, \mathrm{H}-\mathrm{C}(4)) ; 3.98,3.94(A B, J=10.0,2 \mathrm{H}) ; 3.60(d d, J=10.0,5.1, \mathrm{H}-\mathrm{C}(6)) ; 3.50(d d, J=10.0,6.4$, $\mathrm{H}-\mathrm{C}(6)) ; 3.30\left(s, \mathrm{CH}_{3} \mathrm{O}\right) ; 2.87(d d, J(\mathrm{P}, \mathrm{H})=19.0, J=15.5, \mathrm{H}-\mathrm{C}(1)) ; 2.70(d d, J(\mathrm{P}, \mathrm{H})=19.0, J=15.5$, $\mathrm{H}-\mathrm{C}(1)) .{ }^{13} \mathrm{C}-\mathrm{NMR}(50 \mathrm{MHz}) ; 150.38(\mathrm{sd}, J(\mathrm{P}, \mathrm{C})=8.8) ; 138.18(\mathrm{~s}) ; 137.80(2 s) ; 129.55(d) ; 128.32(d) ; 128.25$ $(d) ; 127.84(d) ; 127.61(d) ; 127.50(d) ; 124.87(d) ; 120.67(d) ; 120.58(d) ; 97.02(t) ; 86.20(d d, J(\mathrm{P}, \mathrm{C})=8.5) ; 84.58$ $(d) ; 84.30(\mathrm{sd}, J(\mathrm{P}, \mathrm{C})=1.6) ; 81.75(d) ; 73.19(t) ; 72.35(t) ; 71.72(t) ; 70.51(t) ; 68.73(t d, J(\mathrm{P}, \mathrm{C})=3.5) ; 55.32(q)$; $30.43(d t, J(P, C)=138.6) .{ }^{31} \mathrm{P}-\mathrm{NMR}(80 \mathrm{MHz}):+20.97$. Anal. calc. for $\mathrm{C}_{42} \mathrm{H}_{45} \mathrm{O}_{9} \mathrm{P}(724.82)$: C $69.60, \mathrm{H} 6.26, \mathrm{P}$ 4.27; found: C 69.31, H 6.23, P 4.19.

Diphenyl (2,5-Anhydro-3,4-di-O-benzyl-1-deoxy-2-C-methoxymethoxymethyl-D-mannitol-1-yl)phosphonate (17). A soln. of $1 \mathrm{~g}(1.37 \mathrm{mmol})$ of 16 in 50 ml of MeOH was treated with 100 mg of $10 \% \mathrm{Pd} / \mathrm{C}$ and hydrogenolysed under normal pressure until TLC showed the appearance of small amounts of didebenzylated products with R_{f} (AcOEt/hexane 1:1) 0.05 and 0.08 . Filtration, concentration i.v., and chromatography (100 g of SiO $2, \mathrm{AcOEt} / \mathrm{hex}-$ ane 1:1): $50 \mathrm{mg}(5 \%)$ of starting material $\mathbf{1 6}$ and $709 \mathrm{mg}(81 \%)$ of $\mathbf{1 7}$ as an oil. R_{f} (AcOEt/hexane $\left.1: 1\right) 0.28$, $[\alpha]_{\mathrm{D}}^{25}=+31.0^{\circ}(c=1.28)$. IR: $3570 w, 3460 \mathrm{w}$ (br.), $3065 \mathrm{w}, 3000 \mathrm{~m}, 2930 \mathrm{~m}, 2895 \mathrm{~m}, 2825 \mathrm{w}, 1590 \mathrm{~s}, 1490 \mathrm{~s}, 1452 \mathrm{~m}$, $1395 \mathrm{~m}, 1360 \mathrm{~m}, 1308 \mathrm{~m}, 1268 \mathrm{~s}, 1184 \mathrm{~s}, 1160 \mathrm{~s}, 1145 \mathrm{~s}, 1110 \mathrm{~s}, 1085 \mathrm{~s}, 1063 \mathrm{~s}, 1045 \mathrm{~s}, 1028 \mathrm{~s}, 1008 \mathrm{~m}, 935 \mathrm{~s}, 903 \mathrm{~s} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $(200 \mathrm{MHz}): 7.36-7.08(\mathrm{~m}, 20 \mathrm{arom} . \mathrm{H}) ; 4.70-4.46(\mathrm{~m}, 7 \mathrm{H}) ; 4.24(d d, J=5.4,3.8, \mathrm{H}-\mathrm{C}(4)) ; 4.15(d d d, J=5.4,3.8$, $2.8, \mathrm{H}-\mathrm{C}(5)) ; 3.93,3.84(A B, J=10.7,2 \mathrm{H}) ; 3.66(d d, J=12.0,2.8, \mathrm{H}-\mathrm{C}(6)) ; 3.59-3.52(m, \mathrm{H}-\mathrm{C}(6)) ; 3.31(s$, $\left.\mathrm{CH}_{3} \mathrm{O}\right) ; 2.72(d d, J(\mathrm{P}, \mathrm{H})=19.5, J=15.5, \mathrm{H}-\mathrm{C}(1)) ; 2.62(d d, J(\mathrm{P}, \mathrm{H})=19.5, J=15.5, \mathrm{H}-\mathrm{C}(1)) ; 2.65-2.55(\mathrm{~m}, 1$ H , exchange with $\mathrm{D}_{2} \mathrm{O}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}(50 \mathrm{MHz}): 150.44(\mathrm{~s}) ; 150.36(\mathrm{~s}) ; 150.27(\mathrm{~s}) ; 150.18(\mathrm{~s}) ; 137.72(\mathrm{~s}) ; 137.64(\mathrm{~s})$; $129.64(d) ; 129.55(d) ; 128.40(d) ; 127.83(d) ; 127.76(d) ; 127.57(d) ; 125.00(d) ; 124.94(d) ; 120.62(d) ; 120.53(d) ;$
$96.87(t) ; 86.09(d d, J(\mathrm{P}, \mathrm{C})=7.4) ; 83.21(s d, J(\mathrm{P}, \mathrm{C})=2.6) ; 82.81(d) ; 82.63(d) ; 72.71(t) ; 72.29(t) ; 69.38(d t$, $J(\mathrm{P}, \mathrm{C})=6.9) ; 62.59(t) ; 55.51(q) ; 30.88(d t, J(\mathrm{P}, \mathrm{C})=140.2) .{ }^{31} \mathrm{P}-\mathrm{NMR}(80 \mathrm{MHz}):+20.50$. Anal. calc. for $\mathrm{C}_{35} \mathrm{H}_{39} \mathrm{O}_{9} \mathrm{P}$ (634.68): C 66.23, H 6.19, P 4.87; found: C $66.24, \mathrm{H} 6.19, \mathrm{P} 4.71$.

2,5-Anhydro-3,4-di-O-benzyl-1-deoxy-2-C-methoxymethoxymethyl-1-(diphenoxyphosphoryl)-1-mannitol 6(Diphenyl Phosphate) (18). To a soln. of $300 \mathrm{mg}(0.47 \mathrm{mmol})$ of 17 in 3 ml of abs. pyridine under N_{2} at $0^{\circ}, 117 \mu \mathrm{l}$ ($152 \mathrm{mg}, 0.567 \mathrm{mmol}$) of diphenyl phosphorochloridate was added. The mixture was stirred at r.t. for 30 min and then partitioned between AcOEt and brine. Usual workup afforded a residue which was purified by chromatography (30 g of $\mathrm{SiO}_{2}, \mathrm{AcOEt} /$ hexane $1: 2$): $360 \mathrm{mg}\left(88 \%\right.$) of 18 as an oil. R_{f} (AcOEt/hexane $1: 1$) $0.47,[\alpha]_{\mathrm{D}}^{25}=+16.9^{\circ}$ ($c=1.86$). IR: $3065 m, 3025 m, 3000 m, 2925 m, 2885 m, 1590 s, 1488 s, 1452 m, 1395 m, 1363 m, 1280 s$ (br.), $1180 s$, $1160 \mathrm{~s}, 1110 \mathrm{~s}, 1090 \mathrm{~s}, 1070 \mathrm{~s}, 1040 \mathrm{~s}$, 1024 s , 1008 s , 950 s (br.), $903 \mathrm{~s}, 685 \mathrm{~m}, 665 \mathrm{~m} .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}): 7.30-7.08(\mathrm{~m}$, 30 arom. H$) ; 4.62,4.58(A B, J=6.0,2 \mathrm{H}) ; 4.56,4.51(A B, J=12.0,2 \mathrm{H}) ; 4.44(d, J=2.4, \mathrm{H}-\mathrm{C}(3)) ; 4.42,4.38(A B$, $J=11.7,2 \mathrm{H}) ; 4.35-4.15(m, 3 \mathrm{H}) ; 4.07(d d, J=2.6,2.4, \mathrm{H}-\mathrm{C}(4)) ; 3.93,3.85(A B, J=10.2,2 \mathrm{H}) ; 3.27\left(s, \mathrm{CH}_{3} \mathrm{O}\right)$; $2.80(d d, J(\mathrm{P}, \mathrm{H})=19.5, J=15.0, \mathrm{H}-\mathrm{C}(1)) ; 2.73(d d, J(\mathrm{P}, \mathrm{H})=19.5, J=15.0, \mathrm{H}-\mathrm{C}(1)) .{ }^{13} \mathrm{C}-\mathrm{NMR}(50 \mathrm{MHz}):$ $150.46(s) ; 150.38(s) ; 150.32(s) ; 150.20(s) ; 137.47(s) ; 137.35(s) ; 129.71(d) ; 129.57(d) ; 128.38(d) ; 127.74(d) ;$ $127.57(d) ; 125.32(d) ; 124.93(d) ; 120.61(d) ; 120.52(d) ; 120.03(d) ; 119.93(d) ; 96.99(t) ; 85.72(d d, J(\mathrm{P}, \mathrm{C})=8.5) ;$ $84.93(s d, J(\mathrm{P}, \mathrm{C})=1.9) ; 84.05(d) ; 80.96(d d, J(\mathrm{P}, \mathrm{C})=8.7) ; 72.65(t) ; 71.94(t) ; 68.65(d t, J(\mathrm{P}, \mathrm{C})=4.0) ; 68.13(d t$, $J(\mathrm{P}, \mathrm{C})=6.4) ; 55.35(q) ; 30.60(d t, J(\mathrm{P}, \mathrm{C})=139.0) .{ }^{31} \mathrm{P}-\mathrm{NMR}(80 \mathrm{MHz}):+20.61 ;-11.48$. Anal. calc. for $\mathrm{C}_{47} \mathrm{H}_{48} \mathrm{O}_{12} \mathrm{P}_{2}$ (866.86): C 65.12, H 5.58, P 7.14; found: C 64.86, H 5.48, P 7.36.

Tetrasodium 2,5-Anhydro-I-deoxy-2-C-hydroxymethyl-1-phosphonato-D-mannitol 6-Phosphate (19). A soln. of $250 \mathrm{mg}(0.28 \mathrm{mmol})$ of 18 in 10 ml of MeOH was treated with 50 mg of $10 \% \mathrm{Pd} / \mathrm{C}$ and hydrogenolysed under normal pressure until TLC indicated the disappearance of the products with R_{f} (AcOEt/hexane 1:1) 0.28 and 0.32 (4 h). After filtration, 50 mg of PtO_{2} was added, and the hydrogenolysis was continued until TLC showed the disappearance of the UV-active products and the presence of a product with $R_{\mathrm{f}}\left(\mathrm{PrOH} / \mathrm{NH}_{3} / \mathrm{H}_{2} \mathrm{O} 4: 3: 1\right) 0.71$ (12 h). After filtration and concentration i.v., the residue was taken up in 2 ml of $\mathrm{H}_{2} \mathrm{O}$ and heated to 40° for 2 h . The soin. was diluted with 5 ml of $\mathrm{H}_{2} \mathrm{O}$ and washed with $\mathrm{AcOEt}(2 \times 1 \mathrm{ml})$. The aq. phase was treated with Dowex $C C R-2\left(\mathrm{Na}^{+}\right.$form) and lyophilised. The product was purified by $\mathrm{FC}\left(10 \mathrm{~g} \mathrm{SiO}_{2}\right.$ silylated, $\left.\mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O} 2: 1\right)$, concentrated i.v., lyophilised, and dried over $\mathrm{P}_{2} \mathrm{O}_{5}: 102 \mathrm{mg}(84 \%)$ of $19 . R_{\mathrm{f}}\left(\mathrm{PrOH} / \mathrm{NH}_{3} / \mathrm{H}_{2} \mathrm{O} 4: 3: 1\right) 0.22$, $[\alpha]_{\mathrm{D}}^{25}=+2.9^{\circ}\left(c=0.91 \mathrm{H}_{2} \mathrm{O}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(200 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): 4.30-3.70(\mathrm{~m}, 5 \mathrm{H}) ; 3.63,3.51(A B, J=12.0,2 \mathrm{H}) ; 2.00$ $(d d, J(\mathrm{P}, \mathrm{H})=18.6, J=14.7, \mathrm{H}-\mathrm{C}(1)) ; 1.80(d d, J(\mathrm{P}, \mathrm{H})=18.6, J=14.7, \mathrm{H}-\mathrm{C}(1)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$: $83.33(s) ; 81.32(d) ; 79.02(d d, J(\mathrm{P}, \mathrm{C})=8.1) ; 74.54(d) ; 64.41(d t, J(\mathrm{P}, \mathrm{C})=4.9) ; 64.28(d t, J(\mathrm{P}, \mathrm{C})=2.0) ; 36.11(d t$, $J(\mathrm{P}, \mathrm{C})=126.1) .{ }^{31} \mathrm{P}-\mathrm{NMR}\left(80 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right):+19.11 ;+3.35$. FAB-MS (free acid): $339(M+19), 361(M+\mathrm{Na})$. Anal. calc. for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{Na}_{4} \mathrm{O}_{11} \mathrm{P}_{2}$ (426.08): C 19.73, H 2.84, P 14.53; found: C 19.71, H 3.09, P 14.24.

REFERENCES

[1] R. Meuwly, A. Vasella, Helv. Chim. Acta 1985, $68,997$.
[2] A. M. Hesbain-Frisque, E. Van Schaftingen, H. G. Hers, Eur. J. Biochem. 1981, 117, 325.
[3] E. Van Schaftingen, L. Hue, H. G. Hers, Biochem. J. 1980, I92, 897.
[4] S. J. Pilkis, M. R. El-Maghrabi, J. Pilkis, T.H. Claus, D. A. Cumming, J. Biol. Chem. 1981, 256, 3171.
[5] K. Uyeda, E. Furuya, A. D. Sherry, J. Biol. Chem. 1981, 256, 8679.
[6] D.C. Sabularse, R. L. Anderson, Biochem. Biophys. Res. Commun. 1981, 103, 848.
[7] J. Preiss, Trends Biochem. Sci. 1984, 24.
[8] C. Cseke, A. Balogh, J.H. Wong, B. B. Buchanan, M. Stitt, B. Herzog, H. W. Heldt, Trends Biochem. Sci. 1984, 533.
[9] H. G. Hers, E. Van Schaftingen, Biochem. J. 1982, 206, I.
[10] K. Uyeda, E. Furuya, C. S. Richards, M. Yokoyama, Mol. Cell. Biochem. 1982, $48,97$.
[11] S. J. Pilkis, M. R. El-Maghrabi, M. McGrane, J. Pilkis, E. Fox, Mol. Cell. Endocrinol. 1982, $25,245$.
[12] N. Kornblum, A. S. Erickson, J. Org. Chem. 1981, 46, 1037.
[13] B. Aebischer, R. Meuwly, A. Vasella, Helv. Chim. Acta 1984, 67, 2236.
[14] R. Julina, A. Vasella, Helv. Chim. Acta 1965, $68,819$.
[15] K. Fuji, S. Nakano, E. Fujita, Synthesis 1975, 276.
[16] B. Aebischer, J.H. Bieri, R. Prewo, A. Vasella, Helv. Chim. Acta 1982, 65, 2251.
[17] H. Ohrui, G. H. Jones, J. G. Moffatt, M. L. Maddox, A. T. Christensen, S. K. Byram, J. Am. Chem. Soc. 1975, 97, 4602.
[18] R. B. Meyer Jr., T. E. Stone, P. K. Jesthi, J. Med. Chem. 1984, 27, 1095.
[19] T. Takamoto, H. Omi, T. Matsuzaki, R. Sudoh, Carbohydr. Res. 1978, 60, 97.
[20] T. Sakakibara, T. Takamoto, T. Matsuzaki, H. Omi, U. W. Maung, R. Sudoh, Carbohydr. Res. 1981, 95, 291.
[21] J. E. McMurry, J. Melton, H. Padgett, J. Org. Chem. 1974, 39, 259.
[22] D. H. R. Barton, S. W. McCombie, J. Chem. Soc., Perkin Trans. $/ 1975,1574$.
[23] J. R. Rasmussen, C. J. Slinger, R. J. Kordish, D.D. Newman-Evans, J. Org. Chem. 1981, 46, 4843.
[24] R.W. McClard, Tetrahedron Lett. 1983, 24, 2631.
[25] A. B. Reitz, S.O. Nortey, B. E. Maryanoff, Tetrahedron Lett. 1985, $26,3915$.
[26] C. E. Ballou, D. L. McDonald, Meth. Carbohydr. Chem. 1963, 2, 270.
[27] F. Nicotra, F. Ronchetti, G. Russo, J. Chem. Soc., Chem. Commun. 1982, 470.
[28] F. Nicotra, F. Ronchetti, G. Russo, J. Org. Chem. 1982, 47, 4459.
[29] B. M. Aebischer, H. W. Hanssen, A. T. Vasella, W. B. Schweizer, J. Chem. Soc., Perkin Trans. I 1982, 2139.

[^0]: 1) 11th Communication: [1].
 ${ }^{2}$) The β-D-configuration of $\mathbf{1}$ was deduced from its ${ }^{[3} \mathrm{C}$-NMR spectrum [2].
[^1]: ${ }^{3}$) The reaction follows a radical-chain mechanism (' $S_{\mathrm{RN}} 1$ reaction'). For radical-chain reactions of halonitro ethers compare [1] [13].
 ${ }^{4}$) The equilibration most certainly occurs by β-elimination $/ \beta$-addition. Similar equilibrations of aldose derivatives are known [17] [19] [20].
 ${ }^{5}$) Equilibration in MeOH gave 6/7 65:35.

[^2]: ${ }^{6}$) The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of the diastereoisomers showed two sets of two signals corresponding to imidazolyl protons (major isomer: 8.16 and 7.39 ppm ; minor isomer: 8.48 and 7.73 ppm). In the ${ }^{31} \mathrm{P}$-NMR spectrum, two signals appeared at 8.81 and at 8.80 ppm . Ratios are based on the integrals in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{34} \mathrm{P}-\mathrm{NMR}$ spectra.

[^3]: ${ }^{7}$) Ratio based on integrals in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{34} \mathrm{P}-\mathrm{NMR}$ spectra (see Exper. Part).

