80. Deoxy-nitrosugars

12th Communication1)

Synthesis of Isosteric Mono-Phosphonate Analogues of β - and α -D-Fructose 2,6-Bisphosphate

by Roger Meuwly and Andrea Vasella*

Organisch-Chemisches Institut der Universität Zürich, Winterthurerstr. 190, CH-8057 Zürich

(17.III.86)

A synthesis of the isosteric mono-phosphonate analogues 2a and 19 of the β - and α -D-fructose 2,6-bisphosphate, respectively, is described. Chain elongation of the 1-deoxy-1-nitro-D-arabinose 3 (Scheme 1) by a Henry reaction with paraformaldehyde followed by protection of the resulting alcohol (methoxymethyl ether) and a radical-chain substitution by nitromethane anion gave the key intermediates, the gluco-anhydroalditol 6 and the manno-anhydroalditol 7. These products equilibrated under basic conditions. Conversion of 7 to the aldehyde 9, Abramov reaction of 9 with diphenyl phosphite followed by deoxygenation according to Barton gave the phosphonate 11 (Scheme 2). Selective hydrogenolysis of 11, phosphorylation and deprotection gave 2 which was converted to the tetrasodium salt 2a. Similarly, 6 was transformed into the isosteric phosphonate analogue 19 of the α -D-fructose 2,6-bisphosphate (Scheme 3).

Introduction. – The recent discovery of β -D-fructose 2,6-bisphosphate²) (1) in animals [3–5] and then in plants [6–8] has been of crucial importance for our understanding of glycolysis (glucose utilisation) and gluconeogenesis (*de novo* biosynthesis). β -D-Fructose 2,6-bisphosphate is the regulating agent of these metabolic pathways. It activates glycolysis by stimulating 6-phosphofructo-1-kinase (*EC 2.7.1.11*), which converts fructose 6-phosphate into fructose 1,6-bisphosphate, and it deactivates gluconeogenesis by inhibiting fructose-1,6-bisphosphatase (*EC 3.1.3.11*), the enzyme which catalyses the reverse reaction [9–11].

Since 1 is very prone to hydrolytic and enzymatic degradation to D-fructose 6-phosphate, analogues such as 2 in which the P–O bond of the phosphate monoester at the anomeric center is replaced by a non-hydrolysable P–C bond could prove useful for biochemical and pharmacological studies.

¹) 11th Communication: [1].

²) The β -D-configuration of 1 was deduced from its ¹³C-NMR spectrum [2].

Our approach to the synthesis of the isosteric phosphonate analogue 2 of β -D-fructose 2,6-bisphosphate is based on the expectation that the substitution of a tertiary NO₂ group by a nitromethane moiety as reported by *Kornblum* and *Erickson* [12] is applicable to protected 2-deoxy-2-nitrouloses such as 4 or 5, *i.e.* to tertiary nitro ethers³) (*Scheme 1*). Substitution of the NO₂ group of 4 by nitromethane anion to introduce the second C-substituent should give 7, which can be converted to the desired compound 2. The key step of the synthesis is the stereochemically controlled substitution of the anomeric NO₂ group by the nitromethane anion.

Results. – Base-catalysed reaction of 1-deoxy-1-nitro-D-arabinose **3** [14] with excess paraformaldehyde followed by protection of the resulting OH group as the methoxymethyl ether (formaldehyde dimethyl acetal in presence of P_2O_5 [15]) gave the nitro compounds **4** (53%) and **5** (13%) (*Scheme 1*). Their configurations were inferred from their ¹H-NMR spectra. The known shielding effect of the NO₂ group on a vicinal H_{cis} [16] indicates the depicted configurations (H–C(3) at 4.37 ppm for **5** and at > 4.52 ppm for **4**).

Treatment of the mixture 4/5 (4:1) with 4 equiv. of CH_3NO_2 and 8 equiv. of NaH in DMSO [12] gave the gluco-anhydroalditol 6 (49%), the manno-anhydroalditol 7 (17%), and the erythro-hex-2-enitol 8 (6%). The configuration at C(2) of 6 and 7 was deduced from the nuclear Overhauser effects between H–C(3) and CH_2NO_2 in 6 and between H–C(3) and $CH_2OCH_2OCH_3$ in 7. The gluco- and manno-configurations of 6 and 7, respectively, are not in contradiction with their ¹³C-NMR spectra (75.52 ppm for CH_2NO_2 in 6 and, 75.10 ppm for CH_2NO_2 in 7), considering the known shielding effect of an alkoxy group on a vicinal C_{cis} [17] [18]. Fortuitously, the epimers 6 and 7 equilibrated upon treatment with $Bu_4NF \cdot 3H_2O^4$). Starting with a solution of either 6 or 7 in THF⁵), 6/7 was obtained in a final ratio of 45/55. The equilibration allowed to accumulate the desired isomer 7.

³) The reaction follows a radical-chain mechanism ('S_{RN}1 reaction'). For radical-chain reactions of halonitro ethers compare [1] [13].

⁴) The equilibration most certainly occurs by β -elimination/ β -addition. Similar equilibrations of aldose derivatives are known [17] [19] [20].

⁵) Equilibration in MeOH gave 6/7 65:35.

The nitro compound 7 was converted into the aldehyde 9 (74%) by ozonolysis of the nitronate anion [21] (Scheme 2). Abramov reaction of 9 with an excess of diphenyl phosphite in the presence of Et₃N followed by treatment of the resulting α -hydroxyphosphonates with N,N'-thiocarbonyldiimidazole [22] [23] gave 10 (70%) as a ca. 9:1 mixture of diastereoisomers⁶). Deoxygenation of the imidazolylthiocarbonyloxy derivatives 10 with Bu₃SnH in refluxing toluene [22] [23] gave the phosphonate 11 (79%). Signals of the $CH_2PO_3Ph_2$ group appeared in the ¹H-NMR spectrum of 11 at 2.87 and 2.65 ppm (ABX, J(P, H) = 19.5 Hz, $J_{gem}(H, H) = 15.4$ Hz; cf. [24]) and in the ¹³C-NMR spectrum at 29.05 ppm (dt, J(P, C) = 142.8 Hz; cf. [18] [25]).

Selective hydrogenolysis of 11 with 10% Pd/C in MeOH gave 12 (62%) and starting material 11 (15%). The reaction was stopped when more polar products were formed (TLC monitoring; see *Exper. Part*). In the ¹³C-NMR spectra, OH–C(6) of 12 gave rise to a typical signal at 61.33 ppm, whilst the signal of PhCH₂O–C(6) of 11 appeared at > 68.7 ppm. The alcohol 12 was phosphorylated with diphenyl phosphorochloridate in pyridine [26] to give 13 (91%). The ³¹P-NMR spectra of 13 showed two signals, one at +21.52 ppm for C–PO₃Ph₂ and the other at -11.47 ppm for O–PO₃Ph₂.

The intermediate 13 was deprotected first by treatment with H₂ and 10% Pd/C (hydrogenolysis of the two benzyloxy groups), then with H₂ and PtO₂ (hydrogenolysis of the four phenyl ester groups), and finally by heating in H₂O to 40° (hydrolysis of the formaldehyde-acetal group). The free phosphonic acid 2 was converted to the tetrasodium salt 2a by passage through a short column of *Dowex CCR-2* (Na⁺ form). The salt 2a was purified by flash chromatography on silylated silica gel. The structure of 2a was in agreement with the MS (FAB: M + 1 at 427), the ¹H-NMR (3.67 and 3.61 ppm, *AB*, J = 12.3, CH₂OH; 1.95 ppm, d, J(P, H) = 18.5, CH₂PO₃Na₂), the ¹³C-NMR (32.42 ppm, dt, J(P, C) = 128.5, CH₂PO₃Na₂), and the ³¹P-NMR spectra (+20.19 ppm for C-PO₃Na₂ and +2.10 ppm for O-PO₃Na₂; cf. [13] [18] [27] [28]). It was confirmed by elemental analysis.

⁶) The ¹H-NMR spectrum of the diastereoisomers showed two sets of two signals corresponding to imidazolyl protons (major isomer: 8.16 and 7.39 ppm; minor isomer: 8.48 and 7.73 ppm). In the ³¹P-NMR spectrum, two signals appeared at 8.81 and at 8.80 ppm. Ratios are based on the integrals in the ¹H-NMR and ³¹P-NMR spectra.

In an analogous way, the isosteric phosphonate analogue 19 (Scheme 3) of the α -D-fructose 2,6-bisphosphate was prepared from the primary nitro compound 6 (\rightarrow 14 (63%) \rightarrow 15 (63%) \rightarrow 16 (77%) \rightarrow 17 (81%) \rightarrow 18 (88%) \rightarrow 19 (84%); see *Exper. Part*). Ozonolysis of the nitronate anion derived from 6 gave 14. Again, Abramov reaction of this aldehyde gave a mixture of α -hydroxyphosphonates, from which the imidazolylthio-carbonyloxy derivatives 15 were obtained as a *ca.* 4:1 mixture of diastereoisomers⁷). Deoxygenation of 15 with Bu₃SnH gave the phosphonate 16. In its ¹H-NMR spectrum, the *CH*₂PO₃Ph₂ group gave rise to signals at 2.87 and 2.70 ppm (*ABX*, *J*(P, H) = 19.0, $J_{gem}(H, H) = 15.5$); in the ¹³C-NMR spectrum signals appeared at 30.43 ppm (*dt*, *J*(P, C) = 138.6 Hz).

Selective hydrogenolysis of 16 gave 17 and starting material 16 (5%). Again, the signal of OH–C(6) in the ¹³C-NMR spectrum of 17 appeared at a typical position (62.59 ppm; for 16, C(6) at > 70.51 ppm). Phosphorylation of 17 gave 18. Phosphorylation at C(6) was confirmed by the presence in the ¹³C-NMR spectrum of 18 of two triplets with a P, C coupling (68.65 ppm, J(P, C) = 4.0 and 68.13 ppm J(P, C) = 6.4), the other triplet belonging to $CH_2OCH_2OCH_3$. Deprotection of 18 as described for 13 led to the isosteric phosphonate analogue 19 of α -D-fructose 2,6-bisphosphate. The MS (FAB of the free acid: M + 1 at 339), the ¹H-NMR (3.63 and 3.51 ppm, AB, J = 12.0, CH_2OH ; 2.00 and 1.80 ppm, ABX, J(P, H) = 18.6, $J_{gem}(H, H) = 14.7$, $CH_2PO_3Na_2$), the ¹³C-NMR (64.41 ppm, dt, J(P, C) = 4.9, and 64.28 ppm, dt, J(P, C) = 2.0 for C(6) and CH₂OH; 36.11 ppm, dt, J(P, C) = 126.1, $CH_2PO_3Na_2$), and the ³¹P-NMR spectra (+19.19 ppm for C-PO_3Na_2) and +3.35 ppm for O-PO_3Na_2). The elemental analysis were in agreement with the structure of compound 19.

We thank the Swiss National Science Foundation and Sandoz, Basle, for generous support.

⁷) Ratio based on integrals in the ¹H-NMR and ³¹P-NMR spectra (see *Exper. Part*).

Experimental Part

General. See [29]. The silvlated silica gel was obtained from Merck, Darmstadt (Germany) (Art. 7719). ¹H-NMR, ¹³C-NMR, and ³¹P-NMR: Varian-HA-100 (¹³C(25.2 MHz)), Varian-XL-200 (¹H(200 MHz), ¹³C(50 MHz), ³¹P(80 MHz)), or Bruker-AM-400 spectrometer (¹H(400 MHz), ¹³C(100 MHz), ³¹P(160 MHz)); CDCl₃ soln. unless otherwise specified; δ 's in ppm relative to TMS (¹H-NMR and ¹³C-NMR) as internal standard or relative to H₃PO₄ (³¹P-NMR) as external reference (uncorrected). MS: Varian-112S (EI: 70 eV; CI: isobutan) and Varian-711 spectrometer (FAB, bombardement with 8-keV Xe-atoms, glycerol matrix). FC = flash chromato-graphy.

3,4,6-Tri-O-benzyl-2-deoxy-1-O-methoxymethyl-2-nitro- β - and - α -D-fructofuranose (4 and 5, resp.). A mixture of 3 g (6.67 mmol) of 2,3,5-tri-O-benzyl-1-deoxy-1-nitro- α -D-arabinofuranose (3) [13], 3 g (100 mmol) of paraformaldehyde, and 200 mg (0.6 mmol) of Bu₄NF·3H₂O in 75 ml of CH₂Cl₂ was stirred at r.t. for 24 h. The heterogeneous mixture was filtered and the filtrate diluted with 200 ml of CH₂Cl₂. Usual workup gave an oil which was purified by FC (150 g of SiO₂, AcOEt/CH₂Cl₂/hexane 1:1:3). The two products obtained (2.5 g, R_f (AcOEt/ CH₂Cl₂/hexane 1:1:3) 0.31 and 0.35) were taken up in 50 ml of THF and treated with 6.3 ml (5.4 g, 71 mmol) of formaldehyde dimethyl acetal and 2 g of P₂O₅ (200 mg every 30 min). After stirring at r.t. for 6 h, the mixture was filtered, concentrated to half of the volume, and partitioned between AcOEt and brine. Usual workup afforded an oil which was purified by FC (250 g of SiO₂, toluene/AcOEt 70:1) to give 1.85 g (53%) of 4 and 0.45 g (13%) of 5.

Data of 4. R_{f} (AcOEt/CH₂Cl₂/hexane 1:1:3) 0.52, $[\alpha]_{D}^{25} = +70.1^{\circ}$ (c = 1.2). IR: 3090w, 3060w, 3005m, 2950m, 2935m, 2895m, 2870m, 1565s, 1495m, 1453m, 1363m, 1150s, 1110s, 1048s, 1027s, 950m, 915m. ¹H-NMR (200 MHz): 7.36-7.15 (m, 15 arom. H); 4.65-4.52 (m, 8 H); 4.40 (s, 2 H); 4.28, 3.96 (AB, J = 11.2, 2 H); 4.03 (dd, J = 4.0, 2.0, H–C(4)); 3.67 (dd, J = 10.5, 4.9, H–C(6)); 3.60 (dd, J = 10.5, 6.5, H–C(6)); 3.29 (s, CH₃O). ¹³C-NMR (50 MHz): 137.79 (s); 136.99 (s); 136.41 (s); 128.61 (d); 128.41 (d); 128.31 (d); 127.92 (d); 127.71 (d); 127.66 (d); 118.15 (s); 96.57 (t); 87.50 (d); 85.29 (d); 81.26 (d); 73.02 (t); 71.76 (t); 68.74 (t); 67.19 (t); 55.55 (q). CI-MS: 492 ($M^{+} - OCH_{3}$), 477 ($M^{+} - NO_{2}$). Anal. calc. for C₂₉H₃₃NO₈ (523.58): C 66.53, H 6.35, N 2.68; found: C 66.52, H 6.38, N 2.52.

Data of 5. $R_{\rm f}$ (AcOEt/CH₂Cl₂/hexane 1:1:3) 0.47, $[\alpha]_{\rm D}^{25} = -15.0^{\circ}$ (c = 1.0). IR: 3090w, 3065w, 3030m, 3005m, 2930m, 2890m, 1560s, 1495m, 1453m, 1362m, 1310w, 1150s, 1110s, 1045s, 1028s, 915m. ¹H-NMR (200 MHz): 7.37–7.16 (m, 15 arom. H); 4.73–4.41 (m, 8 H); 4.41 (ddd, J = 6.5, 6.1, 5.5, H–C(5)); 4.37 (d, J = 6.1, H–C(3)); 4.16, 4.05 (AB, J = 11.0, 2 H); 4.15 (t, J = 6.1, H–C(4)); 3.96 (dd, J = 10.5, 6.5, H–C(6)); 3.75 (dd, J = 10.5, 5.5, H–C(6)); 3.34 (s, CH₃O). ¹³C-NMR (50 MHz): 137.89 (s); 137.30 (s); 136.50 (s); 128.48 (d); 128.41 (d); 128.33 (d); 128.07 (d); 127.93 (d); 127.70 (d); 115.79 (s); 96.83 (t); 83.75 (d); 83.54 (d); 82.55 (d); 73.72 (t); 73.43 (t); 72.70 (t); 70.30 (t); 67.44 (t); 55.64 (q). C1-MS: 492 (M^+ – OCH₃), 477 (M^+ – NO₂). Anal. calc. for C₂₉H₃₃NO₈ (523.58): C 66.53, H 6.35, N 2.68; found: C 66.79, H 6.50, N 2.64.

Reaction of 4/5 with CH_3NO_2 . To a suspension of 3.10 g (129 mmol) of NaH in 28 ml of DMSO under N₂, 3.48 ml (3.94 g, 64.6 mmol) of CH_3NO_2 was added dropwise over 15 min. After the foaming had subsided (30 min), a soln. of 8.47 g (16.17 mmol) of 4/5 (4:1) in 28 ml of DMSO was added. The dark mixture was irradiated with a 60-W lamp and stirred for 5.5 h. The soln. was acidified with 3.8 ml of AcOH, stirred for 15 min, and then partitioned between AcOEt and brine. Usual workup afforded an oil which was purified by medium-pressure LC (500 g of SiO₂, AcOEt/CH₂Cl₂/hexane 1:15:15) to give 3.51 g (40%) of 6, 1.05 g (12%) of 7, 1.25 g (14%) of 6/7, and 0.431 g (6%) of 8. A second chromatography on SiO₂ of the 1.25 g of 6/7 gave 0.76 g (9%) of 6 and 0.43 g (5%) of 7 (overall yield: 4.27 g (49%) of 6 and 1.48 g (17%) of 7).

2,5-Anhydro-3,4,6-tri-O-benzyl-1-O-methoxymethyl-2-C-nitromethyl-D-glucitol (6). $R_{\rm f}$ (AcOEt/CH₂Cl₂/hexane 1:15:15) 0.25, $[\alpha]_{25}^{25} = +16.3^{\circ}$ (c = 1.72). IR: 3090w, 3060w, 3000m, 2930m, 2890m, 2870m, 1550s, 1495m, 1453m, 1375m, 1150s, 1100s (br.), 1070 (sh), 1045s, 1028s, 955m, 910m. ¹H-NMR (200 MHz): 7.37–7.19 (m, 15 arom. H); 4.85, 4.76 (AB, J = 11.7, CH₂NO₂); 4.65, 4.61 (AB, J = 6.5, 2 H); 4.60–4.50 (m, 6 H); 4.30 (ddd, J = 7.2, 5.3, 3.0, H–C(5)); 4.18 (d, J = 1.7, H–C(3)); 4.10 (dd, J = 3.0, 1.7, H–C(4)); 3.85, 3.74 (AB, J = 10.5, 2 H–C(1)); 3.59 (dd, J = 10.0, 5.3, H–C(6)); 3.47 (dd, J = 10.0, 7.2, H–C(6)); 3.32 (s, CH₃O). ¹³C-NMR (50 MHz): 138.00 (s); 137.34 (s); 137.23 (s); 128.47 (d); 128.44 (d); 128.33 (d); 127.94 (d); 127.77 (d); 127.68 (d); 96.93 (t); 84.58 (d); 84.00 (d); 82.87 (d); 75.52 (t); 73.31 (t); 72.62 (t); 71.90 (t); 70.05 (t); 66.55 (t); 55.45 (q). CI-MS: 537, 414. Anal. calc. for C₃₀H₃₅NO₈ (537.60): C 67.02, H 6.56, N 2.61; found: C 66.98, H 6.74, N 2.53.

2,5-Anhydro-3,4,6-tri-O-benzyl-1-O-methoxymethyl-2-C-nitromethyl-D-mannitol (7). $R_{\rm f}$ (AcOEt/CH₂Cl₂/hexane 1:15:15) 0.18, [α]_D²⁵ = -9.5° (c = 1.0). IR: 3090w, 3060w, 3010m, 2930m, 2890m, 2865m, 1550s, 1495m, 1453m, 1400m, 1375m, 1365m, 1320m, 1150s, 1110s (br.), 1075 (sh), 1042s, 1025s, 960m, 913m. ¹H-NMR (200 MHz): 7.37-7.16 (m, 15 arom. H); 4.77, 4.66 (AB, J = 12.5, 2 H); 4.65, 4.62 (AB, J = 7.0, 2 H); 4.53 (s, 4 H); 4.45 (s, 2 H); 4.22 (ddd, J = 6.5, 5.0, 3.8, H–C(5)); 4.15 (d, J = 2.5, H–C(3)); 4.11 (dd, J = 3.8, 2.5, H–C(4)); 3.8 (s, 2

H-C(1)); 3.56 (dd, J = 10.5, 5.0, H-C(6)); 3.50 (dd, J = 10.5, 6.5, H-C(6)); $3.33 (s, CH_3O)$. ¹³C-NMR (50 MHz): 138.02 (s); 137.50 (s); 137.00 (s); 128.44 (d); 128.33 (d); 128.01 (d); 127.84 (d); 127.68 (d); 96.77 (t); 86.05 (d); 84.05 (s); 83.71 (d); 82.44 (d); 75.10 (t); 73.41 (t); 72.65 (t); 71.99 (t); 70.11 (t); 67.22 (t); 55.46 (q). CI-MS: 537, 414. Anal. calc. for C₃₀H₃₅NO₈ (537.60): C 67.02, H 6.56, N 2.61; found: C 66.91, H 6.45, N 2.50.

2,5-Anhydro-3,4,6-tri-O-benzyl-1-O-methoxymethyl-D-erythro-hex-2-enitol (8). $R_{\rm f}$ (AcOEt/CH₂Cl₂/hexane 1:15:15) 0.1, $[\alpha]_D^{25} = +26.0^{\circ}$ (c = 1.36). IR: 3090w, 3060w, 3030w, 3000m, 2930m, 2885m, 2865m, 1550w, 1495w, 1450m, 1360m, 1310m, 1290m, 1180m, 1150m, 1097s, 1037s, 1028 (sh), 910m. ¹H-NMR (200 MHz): 7.35–7.23 (m, 15 arom. H); 4.85–4.45 (m, 10 H); 4.13, 4.08 (AB, J = 13.0, 2 H); 3.52 (dd, J = 9.9, 5.4, H–C(6)); 3.34 (s, CH₃O); 3.27 (dd, J = 9.9, 7.2, H–C(6)). ¹³C-NMR (50 MHz): 142.94 (s); 138.07 (s); 137.85 (s); 137.18 (s); 135.22 (s); 128.36 (d); 128.31 (d); 128.09 (d); 127.98 (d); 127.93 (d); 127.70 (d); 127.65 (d); 95.69 (t); 82.50 (d); 80.27 (d); 73.63 (t); 73.41 (t); 69.72 (t); 69.40 (t); 58.52 (t); 55.26 (q). EI-MS: 477 (1), 446 (1), 385 (1), 355 (1), 323 (1), 294 (1), 263 (4), 249 (2), 233 (3), 217 (3), 187 (3), 181 (23), 163 (8), 91 (100). Anal. calc. for C₂₉H₃₂O₆ (476.58): C 73.08, H 6.77; found: C 73.14, H 6.74.

Anomerization of Pure 6 and 7 by $Bu_4NF \cdot 3H_2O$. A) From 6 in THF. A soln. of 100 mg (0.186 mmol) of 6, 12 mg (0.038 mmol) of $Bu_4NF \cdot 3H_2O$ in 1 ml of THF was stirred for 14 h at r.t. Usual workup with AcOEt and brine afforded an oil which was purified by FC (10 g of SiO₂, AcOEt/hexane 1:3) to give 94 mg (94%) of a 45:55 mixture of 6/7, ratio determined by the integrals of the signals of H–C(1) at 3.85 and 3.74 ppm (*AB* syst.) for 6 and at 3.8 ppm (*s*) for 7.

B) From 7 in THF. Similarly, treatment of 100 mg (0.186 mmol) of 7 gave, after chromatography, 95 mg (95%) of a 44:56 mixture of 6/7.

C) From 7 in MeOH. Similarly, treatment of 100 mg (0.186 mmol) of 7 in 1 ml of MeOH gave, after chromatography, 94 mg (94%) of 6/7 (65:35).

2,5-Anhydro-3,4,6-tri-O-benzyl-2-C-methoxymethoxymethyl-D-glucose (9). To 18.6 ml of a 0.4m soln. of NaOMe in MeOH, 4 g (7.44 mmol) of 7 was added. The mixture was stirred for 15 min at r.t., then cooled to -78° , and treated with O₃ until 7 had disappeared (TLC monitoring). The soln. was purged with N₂ and warmed to r.t. After concentration to half of the volume, the residue was partitioned between AcOEt and brine. Usual workup followed by chromatography (400 g of SiO₂, AcOEt/hexane 1:3) gave 2.78 g (74%) of 9. R_f (AcOEt/hexane 1:2) 0.33, $[\alpha]_D^{25} = +24.6^\circ$ (c = 1.32). IR: 3080w, 3060w, 3025w, 3000m, 2930m, 2885m, 2865m, 1735s, 1493m, 1452m, 1363m, 1308w, 1148s, 1090s (br.), 1043s, 1028s, 970m, 913m, 690m. ¹H-NMR (200 MHz): 9.64 (d, J = 0.6, CHO); 7.35–7.15 (m, 15 arom. H); 4.61–4.35 (m, 9 H); 4.17–4.13 (m, 2 H); 3.90 (d, J = 10.6, 1 H); 3.76 (dd, J = 10.6, 0.66, 1 H); 3.72 (dd, J = 10.1, 5.0, H–C(6)); 3.64 (dd, J = 10.1, 6.2, H–C(6)); 3.31 (s, CH₃O). ¹³C-NMR (50 MHz): 200.55 (d); 138.03 (s); 137.52 (s); 136.87 (s); 128.41 (d); 128.31 (d); 127.95 (d); 127.80 (d); 127.67 (d); 96.67 (t); 9.00 (s); 86.81 (d); 82.93 (d); 73.41 (t); 72.39 (t); 71.98 (t); 69.86 (t); 67.27 (t); 55.33 (q). EI-MS: 476 (1), 461 (1), 415 (1), 370 (1), 325 (1), 308 (1), 275 (1), 279 (1), 237 (1), 219 (1), 217 (1), 181 (5), 145 (3), 126 (1), 111 (1), 108 (2), 107 (3), 106 (4), 105 (5), 98 (1), 97 (2), 92 (9), 91 (100), 77 (5), 45 (16). Anal. calc. for C₃₀H₃₀O₇ (506.62): C 71.12, H 6.76; found: C 70.92, H 6.95.

Diphenyl [2,5-Anhydro-3,4,6-tri-O-benzyl-1-O-(imidazol-1-yl)thiocarbonyl-2-C-methoxymethoxymethyl-D/ L-glycero-D-glucitol-I-yl/phosphonate (10). Under N₂, a mixture of 3 g (5.92 mmol) of 9, 4.61 ml (5.61 g, 24 mmol) of diphenyl phosphite and 247 μ l (179 mg, 1.77 mmol) of Et₃N was stirred at r.t. for 1 h. Chromatography of the mixture (500 g of SiO₂, AcOEt/hexane 1:2) gave 3.55 g (81%) of the α -hydroxyphosphonates. These products were taken up in 25 ml of THF, and 1.7 g (9.58 mmol) of N,N'-thiocarbonyldiimidazole was added. The mixture was stirred under N_2 at r.t. for 4 h, then concentrated *i.v.*, and the product isolated by FC (300 g of SiO₂, AcOEt/hexane 1:2): 3.54 g (70% from 9) of 10 as a ca. 9:1 mixture of diastereoisomers. $R_{\rm f}$ (AcOEt/hexane 1:1) 0.38, $[\alpha]_{D}^{25} = -20.4^{\circ}$ (c = 0.99). IR: 3160w, 3135w, 3080w, 3060w, 3000m, 2930m, 2895m, 2865m, 2825w, 1590m, 1488s, 1466s, 1452m, 1390s, 1360m, 1330s, 1285s, 1180s, 1160s, 1105s, 1095s, 1070s, 1040s, 1026s, 1008s, 950s, 937s, 914 (sh), 835w. ¹H-NMR (200 MHz): 8.48 (s, 0.15 H); 8.16 (s, 0.85 H); 7.73 (s, 0.15 H); 7.39 (s, 0.85 H); 7.38–6.86 (m, 26 H); 4.66-3.91 (m, 14 H); 3.57 (d, J = 4.2, 0.3 H); 3.43 (d, J = 4.6, 1.7 H); 3.29 (s, 0.45 H); 3.26 (s, 2.55 H). 13 C-NMR (50 MHz): 182.93 (s); 182.82 (s); 150.28 (sd, J(P,C) = 9.4); 149.96 (sd, J(P,C) = 9.4); 137.90 (s); 137.58 (s); 137.21 (s); 137.03 (s); 130.0–118.13 (d); 96.95 (t); 86.48 (dd, J(P, C) = 6.1); 86.30 (sd, J(P, C) = 2.4); 83.95 (d); 81.62 (d); 76.79 (dd, J(P,C) = 166.9); 73.12 (t); 72.98 (t); 72.20 (t); 70.08 (t); 68.11 (dt, J(P,C) = 1.8); 55.52 (q); minor isomer: 83.13(d); 81.15(d); 73.37(t); 69.25(t); 68.23(t). ³¹P-NMR (80 MHz); +8.81(0.9 P); +8.80(0.1 P). Anal. calc. for C₄₆H₄₇N₂O₁₀PS (850.93): C 64.92, H 5.57, N 3.29, P 3.63, S 3.76; found: C 65.18, H 5.51, N 3.27, P 3.40, S 3.53.

Diphenyl (2,5-Anhydro-3,4,6-tri-O-benzyl-1-deoxy-2-C-methoxymethoxymethyl-D-glucitol-1-yl)phosphonate (11). A mixture of 3.5 g (4.11 mmol) of 10 and 80 ml of dry toluene was added dropwise over 75 min to a stirred refluxing soln. of 200 ml of toluene and 4.35 ml of Bu_3SnH (4.78 g, 16.4 mmol) under N_2 . After 4 h, (TLC:

reduction complete), the soln. was cooled and concentrated *i.v.* The residue was purified by FC (300 g of SiO₂, AcOEt/hexane 1:2): 2.35 g (79%) of **11** as an oil. $R_{\rm f}$ (AcOEt/hexane 1:2) 0.22, $[\alpha]_D^{25} = -2.4^{\circ}$ (*c* = 1.45). IR: 3085*w*, 3065*w*, 3000*m*, 2930*m*, 2890*m*, 2870*m*, 2825*w*, 1593*m*, 1490*s*, 1453*m*, 1390*w*, 1268*s*, 1186*s*, 1160*s*, 1150*s*, 1107*s*, 1072*s*, 1040*s*, 1038*s*, 1009*m*, 930*s* (br.), 903*m*, 690*m*. ¹H-NMR (400 MHz): 7.35–7.09 (*m*, 25 arom. H); 4.67–4.45 (*m*, 8 H); 4.20 (*ddd*, *J* = 6.2, 5.2, 4.3, H–C(5)); 4.16 (*d*, *J* = 2.6, H–C(3)); 4.12 (*dd*, *J* = 4.3, 2.6, H–C(4)); 4.03, 3.86 (*AB*, *J* = 10.1, 2 H); 3.60 (*dd*, *J* = 10.0, 5.2, H–C(6)); 3.52 (*dd*, *J* = 10.0, 6.2, H–C(6)); 3.32 (*s*, CH₃O); 2.87 (*dd*, *J*(P, H) = 19.5, *J* = 15.4, H–C(1)); 2.65 (*dd*, *J*(P, H) = 19.5, *J* = 15.4, H–C(1)). ¹³C-NMR (50 MHz): 150.63 (*s*); 150.44 (*s*); 150.36 (*s*); 138.16 (*s*); 137.80 (*s*); 137.75 (*s*); 129.66 (*d*); 129.49 (*d*); 128.32 (*d*); 128.23 (*d*); 127.82 (*d*); 127.71 (*d*); 127.58 (*d*); 124.75 (*d*); 120.81 (*d*); 72.13 (*t*); 71.89 (*t*); 70.63 (*t*); 68.71 (*t*); 55.36 (*q*); 29.05 (*dt*, *J*(P,C) = 142.8). ³¹P-NMR (80 MHz): +22.00. Anal. calc. for C₄₂H₄₅O₉P (724.82): C 69.60, H 6.26, P 4.27; found: C 69.36, H 6.22, P 4.15.

Diphenyl (2,5-Anhydro-3,4-di-O-benzyl-1-deoxy-2-C-methoxymethoxymethyl-D-glucitol-1-yl)phosphonate (12). A soln. of 2 g (2.76 mmol) of 11 in 100 ml of MeOH was treated with 200 mg of 10% Pd/C and hydrogenolysed under normal pressure until TLC showed the appearance of small amount of didebenzylated products with R_f (AcOEt/hexane 1:1) 0.28 and 0.05. Filtration, concentration *i.v.*, and chromatography (200 g of SiO₂, AcOEt/hexane 1:2): 306 mg (15%) of 11 and 1.09 g (62%) of 12 as an oil. R_f (AcOEt/hexane 1:1) 0.50, $[\alpha]_{D}^{25} = -13.8^{\circ}$ (c = 1.47). IR: 3380m (br.), 3065w, 3000m, 2935m, 2890m, 2825w, 1592s, 1490s, 1453m, 1400m, 1362m, 1310m, 1255s, 1184s, 1160s, 1110s, 1072s, 1043s, 1028s, 1010s, 945s (br.), 903s, 848w, 830w, 685m. ¹H-NMR (200 MHz): 7.38–7.09 (m, 20 arom. H); 4.63 (s, 6 H); 4.44 (dd, J = 6.8, 5.6, H-C(4)); 4.26 (d, J = 5.6, J =H-C(3)); 4.50-4.20 (m, 1 H, exchange with D₂O); 3.98 (ddd, J = 6.8, 3.0, 2.3, H-C(5)); 3.74 (dd, J = 12.6, 2.3, 10.00); 3.98 (ddd, J = 6.8, 3.0, 2.3, H-C(5)); 3.74 (dd, J = 12.6, 2.3, 10.00); 3.98 (ddd, J = 12.6, 2.00); 3.98 (ddd, J H-C(6)); 3.74 (s, 2 H); 3.60-3.53 (m, H-C(6)); 3.32 (s, CH₃O); 2.95 (dd, J(P, H) = 19.6, J = 15.8, H-C(1)); 2.48 (dd, J(P,H) = 19.6, J = 15.8, H-C(1)). ¹³C-NMR (50 MHz): 150.31 (s); 150.26 (s); 137.91 (s); 137.72 (s); 129.62 (d); 129.49 (d); 128.33 (d); 127.69 (d); 127.54 (d); 124.98 (d); 120.73 (d); 120.64 (d); 120.60 (d); 120.56 (d); 96.71 (t); 86.37 (dd, J(P, C) = 6.7); 82.15 (d); 81.92 (s); 81.82 (d); 72.73 (t); 72.50 (t); 70.84 (dt, J(P, C) = 3.2); 61.33 (t); 70.84 (dt, J(P, C) = 3.2); 70.84 (dt, J(P, C) =55.39 (q); 29.92 (dt, $J(\mathbf{P}, \mathbf{C}) = 145.6$). ³¹P-NMR (80 MHz): +23.30. Anal. calc. for $C_{35}H_{39}O_9P$ (634.68): C 66.23, H 6.19, P 4.87; found: C 66.09, H 6.21, P 4.71.

2,5-Anhydro-3,4-di-O-benzyl-1-deoxy-2- C-methoxymethoxymethyl-1-(diphenoxyphosphoryl) -D-glucitol 6-(Diphenyl Phosphate) (13). To a soln. of 400 mg (0.63 mmol) of 12 in 4 ml of abs. pyridine under N₂ at 0°, 195 µl (254 mg, 0.945 mmol) of diphenyl phosphorochloridate was added. This mixture was stirred at r.t. for 30 min and then partitioned between AcOEt and brine. Usual workup afforded a residue which was purified by chromatog-raphy (50 g of SiO₂, AcOEt/hexane 1:2): 496 mg (91%) of 13 as an oil. R_f (AcOEt/hexane 1:1) 0.56, $[\alpha]_D^{25} = +1.5^{\circ}$ (c = 1.13). IR: 3065m, 3000m, 2940m, 2890m, 1590s, 1488s, 1453m, 1393w, 1365w, 1280s (br.), 1184s, 1160s, 1100s (br.), 1070s, 1040s, 1025s, 1010s, 950s (br.), 903s, 825w, 685m. ¹H-NMR (400 MHz): 7.33 -7.07 (m, 30 arom. H); 4.62-4.44 (m, 6 H); 4.26-4.23 (m, 3 H); 4.12 (d, J = 1.9, H–C(3)); 4.11-4.07 (m, 1 H); 4.00, 3.81 (AB, J = 10.2, 2 H); 3.26 (s, CH₃O); 2.83 (dd, J(P,H) = 19.6, J = 15.3, H–C(1)). ¹³C-NMR (50 MHz): 150.46 (s); 150.39 (s); 150.32 (s); 150.28 (s); 137.37 (s); 129.68 (d); 129.53 (d); 127.32 (d); 127.52 (d); 125.28 (d); 124.79 (d); 120.57 (d); 120.46 (d); 120.01 (d); 119.92 (d); 96.78 (t); 85.502 (s); 55.32 (q); 28.92 (dt, J(P,C) = 42.1). ³¹P-NMR (80 MHz): +21.52; -11.47. Anal. calc. for C₄₇H₄₈O₁₂P₂ (866.86): C 65.12, H 5.58, P 7.14; found: C 65.14, H 5.75, P 7.32.

Tetrasodium 2,5-Anhydro-1-deoxy-2- C-hydroxymethyl-1-phosphonato-D-glucitol 6-Phosphate (2a). A soln. of 2.5 g (2.88 mmol) of 13 in 100 ml of MeOH was treated with 500 mg of 10% Pd/C and hydrogenolysed under normal pressure until the disappearance of the product with R_f (AcOEt/hexane 1:1) 0.25 (44 h). After filtration, 1.6 g of PtO₂ was added and the hydrogenolysis was continued until TLC showed the disappearance of UV-active products and the presence of a product with R_f (PrOH/NH₃/H₂O 4:3:1) 0.53 (24 h). After filtration and concentration *i.v.*, the residue was taken up in 20 ml of H₂O and heated to 50° for 6 h. The soln, was diluted with 50 ml of H₂O and washed with AcOEt (2 × 2 ml). The aq. phase was treated with *Dowex CCR-2* (Na⁺ form) and lyophilised. The product was purified by FC (100 g of SiO₂ silylated, 150 ml of EtOH/H₂O 3:1 then 300 ml of EtOH/H₂O 2:1), concentrated *i.v.*, lyophilised, and dried *i.v.* over P₂O₅: 770 mg (63%) of **2a**. R_f (PrOH/NH₃/H₂O 4:3:1) 0.25, [α]_D²⁵ = +9.3° (*c* = 0.97 H₂O). ¹H-NMR (400 MHz, D₂O): 4.09 (*t*, *J* = 6.5, 1 H); 4.01 (*d*, *J* = 5.9, H-C(3)); 4.00-3.80 (*m*, 3 H); 3.67, 3.61 (*AB*, *J* = 12.3, CH₂OH); 1.95 (*d*, *J*(P, C) = 5.1); 64.97 (*t*); 32.42 (*dt*, *J*(P, C) = 128.5). ³¹P-NMR (80 MHz, D₂O): +20.19; +2.10. FAB-MS: 427 (*M* + 1), 405 (*M* + 2 - Na), 387 (*M* + 2 - Na - H₂O), 383 (*M* + 3 - 2 Na), 365 (*M* + 3 - 2 Na - H₂O), 301 (*M* + 4 - 3 Na). Anal. calc. for C₇H₁₂Na₄O₁₁P₂ (426.08): C 19.73, H 2.84, P 14.53; found: C 19.60, H 3.12, P 14.30.

2,5-Anhydro-3,4,6-tri-O-benzyl-2-C-methoxymethoxymethyl-D-mannose (14) was prepared, as described for **9** (see above), from 4.65 ml of a 0.4m soln. of NaOMe in MeOH and 1 g (1.86 mmol) of **6**. Chromatography (100 g of SiO₂, AcOEt/hexane 1:3) gave 595 mg (63%) of **14**. R_f (AcOEt/hexane 1:2) 0.35, $[\alpha]_D^{25} = +34.7^\circ$ (c = 1.24). IR: 3090w, 3060w, 3030w, 3000m, 2930m, 2870m, 2825w, 1730s, 1496w, 1453m, 1400w, 1363m, 1310w, 1150m, 1100s (br.), 1073s, 1042s, 1028 (sh), 948m, 913m. ¹H-NMR (200 MHz): 9.71 (d, J = 1.1, CHO); 7.34–7.17 (m, 15 arom. H); 4.60–4.32 (m, 9 H); 4.15 (d, J = 1.8, H–C(3)); 4.03 (t, J = 1.8, H–C(4)); 4.00 (d, J = 10.7, H–C(1)); 3.77 (dd, J = 9.8, 5.7, H–C(6)); 3.58 (dd, J = 9.8, 7.5, H–C(6)); 3.27 (s, CH₃O). ¹³C-NMR (50 MHz): 203.77 (d); 137.18 (s); 137.08 (s); 128.46 (d); 128.30 (d); 127.80 (d); 127.80 (d); 127.60 (d); 96.63 (t); 91.64 (s); 84.30 (d); 325 (1), 223 (1), 219 (1), 187 (1), 182 (1), 181 (8), 175 (1), 168 (1), 157 (1), 146 (1), 415 (1), 127 (1), 126 (2), 107 (1), 92 (9), 91 (100), 84 (5), 45 (11). Anal. calc. for C₃₀H₁₄O₇ (506.62): C 71.12, H 6.76; found: C 70.95, H 6.64.

Diphenyl [2,5-Anhydro-3,4,6-tri-O-benzyl-1-O-(imidazol-1-yl)thiocarbonyl-2-C-methoxymethoxymethyl-D/ L-glycero-D-mannitol-l-yl]phosphonate (15). Under N₂, a mixture of 150 mg (0.296 mmol) of 14, 230 µl (280 mg, 1.2 mmol) of diphenylphosphite and 4.2 µl (3 mg, 0.03 mmol) of Et₃N was stirred at r.t. for 12 h. Chromatography of the mixture (50 g of SiO₂, AcOEt/hexane 1:2) gave 162 mg (74%) of the α -hydroxyphosphonates. These products were taken up in 1 ml of THF, and 78 mg (0.437 mmol) of $N_{,N'}$ -thiocarbonyldiinidazole was added. The reaction mixture was stirred under N₂ for 2 h, then concentrated *i.v.*, and the residue was purified by FC (20 g of SiO₂, AcOEt/hexane 1:2): 158 mg (63% from 14) of 15 as a ca. 4:1 mixture of diastereoisomers. R_f (AcOEt/hexane 1:1) $0.30, [\alpha]_{D}^{25} = -8.7^{\circ}$ (c = 0.97). IR: 3160w, 3135w, 3065w, 3000m, 2930m, 2880m, 2870m, 2830w, 1590m, 1532w, 1488s, 1468s, 1453s, 1390s, 1360m, 1330s, 1288s, 1180s, 1160s, 1105s, 1093s, 1072s, 1043s, 1027s, 1010s, 955s, 940s, (0.2 H); 7.55(t, J = 1.6, 0.8 H); 7.34-6.92(m, 26 H); 4.88-4.84(m, 1 H); 4.66-4.00(m, 11 H); 3.93(s, 2 H); 3.51-3.34(*m*, 2 H); 3.24 (*s*, 2.4 H); 3.20 (*s*, 0.6 H). ¹³C-NMR (50 MHz): 183.20 (*d*); 183.06 (*d*); 150.18 (*sd*, *J*(P,C) = 9.4); 149.96 (sd, J(P,C) = 8.9); 138.05–118.26 (d + s); 97.24 (t); 85.90 (sd, J(P,C) = 4.2); 84.90 (dd, J(P,C) = 2.8); 84.51(d); 81.60(d); 77.55(dd, J(P,C) = 165); 73.25(t); 73.06(t); 72.07(t); 69.97(t); 67.52(td, J(P,C) = 3.6); 55.45 (q); minor isomer: 97.15 (t); 85.77 (s); 84.22 (d); 81.39 (d); 72.35 (t); 70.13 (t); 55.33 (q). ³¹P-NMR (80 MHz): +8.69 (0.83 P); +7.87 (0.17 P). Anal. calc. for C₄₆H₄₇N₂O₁₀PS (850.93): C 64.92, H 5.57, N 3.29, P 3.63, S 3.76; found: C 65.12, H 5.56, N 3.14, P 3.49, S 3.65.

Diphenyl (2,5-Anhydro-3,4,6-tri-O-benzyl-1-deoxy-2-C-methoxymethoxymethyl-D-mannitol-1-yl)phosphonate (16). A mixture of 500 mg (0.58 mmol) of 15 in 10 ml of dry toluene was added dropwise, over 75 min, to a stirred refluxing soln. of 25 ml of toluene and 560 µl of Bu₃SnH (613 mg, 2.11 mmol) under N₂. When TLC indicated the reaction was complete (2 h), the soln. was cooled and then concentrated *i.v.* The residue was purified by FC (50 g of SiO₂, AcOEt/hexane 1:2): 323 mg (77%) of 16. R_f (AcOEt/hexane 1:2) 0.24, $[\alpha]_{12}^{25} = +18.1^{\circ}$ (c = 1.06). IR: 3080w, 3060w, 3000w, 2930m, 2885m, 2865m, 1592m, 1490s, 1452m, 1394m, 1362m, 1308m, 1268s, 1183s, 1160s, 1143s, 1100s, 1070s, 1044s, 1027s, 1007s, 935s (br.), 902m.¹H-NMR (200 MHz): 7.30–7.11 (m, 25 arom. H); 4.64 (s, 2 H); 4.56 (s, 2 H); 4.53 (s, 2 H); 4.51 (s, 2 H); 4.45 (d, J = 2.4, H–C(3)); 4.31 (ddd, J = 6.4, 5.1, 3.6, H–C(5)); 4.10 (dd, J = 3.6, 2.4, H–C(4)); 3.98, 3.94 (AB, J = 10.0, 2 H); 3.60 (dd, J = 10.0, 5.1, H–C(6)); 3.50 (dd, J = 10.0, 6.4, H–C(6)); 3.30 (s, CH₃O); 2.87 (dd, J(P, H) = 190, J = 15.5, H–C(1)). ¹³C-NMR (50 MHz): 150.38 (sd, J(P, C) = 8.8); 138.18 (s); 137.80 (2s); 129.55 (d); 128.32 (d); 128.25 (d); 127.84 (d); 127.50 (d); 127.50 (d); 124.87 (d); 120.67 (d); 120.58 (d); 97.02 (t); 86.20 (dd, J(P, C) = 8.5); 84.58 (d); 84.30 (sd, J(P, C) = 1.6); 81.75 (d); 71.21 (t); 72.35 (t); 71.72 (t); 70.51 (t); 68.73 (td, J(P, C) = 3.5); 55.32 (q); 30.43 (dt, J(P, C) = 138.6). ³¹P-NMR (80 MHz): +20.97. Anal. calc. for C₄₂H₄₅O₉P (724.82): C 69.60, H 6.26, P 4.27; found: C 69.31, H 6.23, P 4.19.

Diphenyl (2,5-Anhydro-3,4-di-O-benzyl-1-deoxy-2-C-methoxymethoxymethyl-D-mannitol-1-yl)phosphonate (17). A soln. of 1 g (1.37 mmol) of 16 in 50 ml of MeOH was treated with 100 mg of 10% Pd/C and hydrogenolysed under normal pressure until TLC showed the appearance of small amounts of didebenzylated products with $R_{\rm f}$ (AcOEt/hexane 1:1) 0.05 and 0.08. Filtration, concentration *i.v.*, and chromatography (100 g of SiO₂, AcOEt/hexane 1:1) 50 mg (5%) of starting material 16 and 709 mg (81%) of 17 as an oil. $R_{\rm f}$ (AcOEt/hexane 1:1) 0.05 and 0.08. Filtration, concentration *i.v.*, and chromatography (100 g of SiO₂, AcOEt/hexane 1:1) 50 mg (5%) of starting material 16 and 709 mg (81%) of 17 as an oil. $R_{\rm f}$ (AcOEt/hexane 1:1) 0.28, $[\alpha]_{\rm D}^{25} = +31.0^{\circ}$ (c = 1.28). IR: 3570w, 3460w (br.), 3065w, 3000m, 2930m, 2895m, 2825w, 1590s, 1490s, 1452m, 1395m, 1360m, 1308m, 1268s, 1184s, 1160s, 1145s, 1110s, 1085s, 1063s, 1045s, 1028s, 1008m, 935s, 903s. ¹H-NMR (200 MHz): 7.36-7.08 (m, 20 arom. H); 4.70-4.46 (m, 7 H); 4.24 (dd, J = 5.4, 3.8, H-C(4)); 4.15 (ddd, J = 5.4, 3.8, 2.8, H-C(5)); 3.93, 3.84 (AB, J = 10.7, 2 H); 3.66 (dd, J = 12.0, 2.8, H-C(6); 3.59-3.52 (m, H-C(6)); 3.31 (s, CH₃O); 2.72 (dd, J(P,H) = 19.5, J = 15.5, H-C(1)); 2.62 (dd, J(P,H) = 19.5, J = 15.5, (H-C(1)); 2.65-2.55 (m, 1 H, exchange with D₂O). ¹³C-NMR (50 MHz): 150.44 (s); 150.36 (s); 150.27 (s); 150.18 (s); 137.72 (s); 137.64 (s); 129.64 (d); 129.55 (d); 128.40 (d); 127.76 (d); 127.77 (d); 125.00 (d); 124.94 (d); 120.62 (d; 120.53 (d);

96.87 (*t*); 86.09 (*dd*, J(P,C) = 7.4); 83.21 (*sd*, J(P,C) = 2.6); 82.81 (*d*); 82.63 (*d*); 72.71 (*t*); 72.29 (*t*); 69.38 (*dt*, J(P,C) = 6.9); 62.59 (*t*); 55.51 (*q*); 30.88 (*dt*, J(P,C) = 140.2). ³¹P-NMR (80 MHz): +20.50. Anal. calc. for C₃₅H₃₉O₉P (634.68): C 66.23, H 6.19, P 4.87; found: C 66.24, H 6.19, P 4.71.

2,5-Anhydro-3,4-di-O-benzyl-1-deoxy-2-C-methoxymethoxymethyl-1-(diphenoxyphosphoryl)-D-mannitol 6-(Diphenyl Phosphate) (18). To a soln. of 300 mg (0.47 mmol) of 17 in 3 ml of abs. pyridine under N₂ at 0°, 117 µl (152 mg, 0.567 mmol) of diphenyl phosphorochloridate was added. The mixture was stirred at r.t. for 30 min and then partitioned between AcOEt and brine. Usual workup afforded a residue which was purified by chromatog-raphy (30 g of SiO₂, AcOEt/hexane 1:2): 360 mg (88 %) of 18 as an oil. R_f (AcOEt/hexane 1:1) 0.47, $[\alpha]_D^{25} = +16.9^\circ$ (c = 1.86). IR: 3065m, 3025m, 3000m, 2925m, 2885m, 1590s, 1488s, 1452m, 1395m, 1363m, 1280s (br.), 1180s, 1160s, 1110s, 1090s, 1070s, 1040s, 1024s, 1008s, 950s (br.), 903s, 685m, 665m. ¹H-NMR (400 MHz): 7.30–7.08 (m, 30 arom. H); 4.62, 4.58 (*AB*, *J* = 6.0, 2 H); 4.56, 4.51 (*AB*, *J* = 12.0, 2 H); 4.44 (*d*, *J* = 2.4, H–C(3)); 4.42, 4.38 (*AB*, *J* = 11.7, 2 H); 4.35–4.15 (m, 3 H); 4.07 (*dd*, *J* = 2.6, 2.4, H–C(4)); 3.93, 3.85 (*AB*, *J* = 10.2, 2 H); 3.27 (*s*, CH₃O); 2.80 (*dd*, *J*(P, H) = 19.5, *J* = 15.0, H–C(1)). ¹³C-NMR (50 MHz): 150.46 (s); 150.32 (s); 150.20 (s); 137.47 (s); 137.35 (s); 129.71 (d); 129.57 (d); 128.38 (d); 127.74 (d); 127.57 (d); 125.32 (d); 124.93 (d); 120.61 (d); 120.52 (d); 120.03 (d); 119.93 (d); 96.99 (t); 85.72 (*dd*, *J*(P, C) = 8.5); 84.93 (*sd*, *J*(P, C) = 1.9); 84.05 (*df*, *J*(P, C) = 139.0). ³¹P-NMR (80 MHz): +20.61; -11.48. Anal. calc. for C₄₇H₄₈O₁₂P₂ (866.86): C 65.12, H 5.58, P 7.14; found: C 64.86, H 5.48, P 7.36.

Tetrasodium 2,5-*Anhydro-1-deoxy-2*-C-*hydroxymethyl-1-phosphonato-D-mannitol* 6-*Phosphate* (19). A soln. of 250 mg (0.28 mmol) of 18 in 10 ml of MeOH was treated with 50 mg of 10% Pd/C and hydrogenolysed under normal pressure until TLC indicated the disappearance of the products with R_f (AcOEt/hexane 1:1) 0.28 and 0.32 (4 h). After filtration, 50 mg of PtO₂ was added, and the hydrogenolysis was continued until TLC showed the disappearance of the UV-active products and the presence of a product with R_f (PrOH/NH₃/H₂O 4:3:1) 0.71 (12 h). After filtration and concentration *i.v.*, the residue was taken up in 2 ml of H₂O and heated to 40° for 2 h. The soln, was diluted with 5 ml of H₂O and washed with AcOEt (2 × 1 ml). The aq. phase was treated with *Dowex CCR-2* (Na⁺ form) and lyophilised. The product was purified by FC (10 g SiO₂ silylated, EtOH/H₂O 2:1), concentrated *i.v.*, lyophilised, and dried over P₂O₅: 102 mg (84%) of 19. R_f (PrOH/NH₃/H₂O 4:3:1) 0.22 (d_d , J(P, H) = 18.6, J = 14.7, H–C(1)); 1.80 (d_d , J(P, H) = 18.6, J = 14.7, H–C(1)); 1.80 (d_d , J(P, H) = 18.6, J = 14.7, H–C(1)); 1.80 (d_d , J(P, H) = 18.6, J = 14.7, H–C(1)); 1.80 (d_d , J(P, H) = 18.6, J = 14.7, H–C(1)); 1.80 (d_d , J(P, C) = 4.9); 64.28 (d_d , J(P, C) = 2.0); 3.61 (d_d , J(P, C) = 126.1). ³¹P-NMR (80 MHz, D₂O): +19.11; +3.35. FAB-MS (free acid): 339 (M + 19), 361 (M + Na). Anal. calc. for C₇H₁₂Na₄O₁₁P₂ (426.08): C 19.73, H 2.84, P 14.53; found: C 19.71, H 3.09, P 14.24.

REFERENCES

- [1] R. Meuwly, A. Vasella, Helv. Chim. Acta 1985, 68, 997.
- [2] A. M. Hesbain-Frisque, E. Van Schaftingen, H. G. Hers, Eur. J. Biochem. 1981, 117, 325.
- [3] E. Van Schaftingen, L. Hue, H. G. Hers, Biochem. J. 1980, 192, 897.
- [4] S.J. Pilkis, M. R. El-Maghrabi, J. Pilkis, T. H. Claus, D. A. Cumming, J. Biol. Chem. 1981, 256, 3171.
- [5] K. Uyeda, E. Furuya, A. D. Sherry, J. Biol. Chem. 1981, 256, 8679.
- [6] D.C. Sabularse, R.L. Anderson, Biochem. Biophys. Res. Commun. 1981, 103, 848.
- [7] J. Preiss, Trends Biochem. Sci. 1984, 24.
- [8] C. Cseke, A. Balogh, J.H. Wong, B.B. Buchanan, M. Stitt, B. Herzog, H.W. Heldt, Trends Biochem. Sci. 1984, 533.
- [9] H.G. Hers, E. Van Schaftingen, Biochem. J. 1982, 206, 1.
- [10] K. Uyeda, E. Furuya, C.S. Richards, M. Yokoyama, Mol. Cell. Biochem. 1982, 48, 97.
- [11] S.J. Pilkis, M.R. El-Maghrabi, M. McGrane, J. Pilkis, E. Fox, Mol. Cell. Endocrinol. 1982, 25, 245.
- [12] N. Kornblum, A.S. Erickson, J. Org. Chem. 1981, 46, 1037.
- [13] B. Aebischer, R. Meuwly, A. Vasella, Helv. Chim. Acta 1984, 67, 2236.
- [14] R. Julina, A. Vasella, Helv. Chim. Acta 1965, 68, 819.
- [15] K. Fuji, S. Nakano, E. Fujita, Synthesis 1975, 276.
- [16] B. Aebischer, J. H. Bieri, R. Prewo, A. Vasella, Helv. Chim. Acta 1982, 65, 2251.

- [17] H. Ohrui, G. H. Jones, J. G. Moffatt, M. L. Maddox, A. T. Christensen, S. K. Byram, J. Am. Chem. Soc. 1975, 97, 4602.
- [18] R. B. Meyer Jr., T. E. Stone, P. K. Jesthi, J. Med. Chem. 1984, 27, 1095.
- [19] T. Takamoto, H. Omi, T. Matsuzaki, R. Sudoh, Carbohydr. Res. 1978, 60, 97.
- [20] T. Sakakibara, T. Takamoto, T. Matsuzaki, H. Omi, U. W. Maung, R. Sudoh, Carbohydr. Res. 1981, 95, 291.
- [21] J.E. McMurry, J. Melton, H. Padgett, J. Org. Chem. 1974, 39, 259.
- [22] D. H. R. Barton, S. W. McCombie, J. Chem. Soc., Perkin Trans. 1 1975, 1574.
- [23] J.R. Rasmussen, C.J. Slinger, R.J. Kordish, D.D. Newman-Evans, J. Org. Chem. 1981, 46, 4843.
- [24] R. W. McClard, Tetrahedron Lett. 1983, 24, 2631.
- [25] A.B. Reitz, S.O. Nortey, B.E. Maryanoff, Tetrahedron Lett. 1985, 26, 3915.
- [26] C.E. Ballou, D.L. McDonald, Meth. Carbohydr. Chem. 1963, 2, 270.
- [27] F. Nicotra, F. Ronchetti, G. Russo, J. Chem. Soc., Chem. Commun. 1982, 470.
- [28] F. Nicotra, F. Ronchetti, G. Russo, J. Org. Chem. 1982, 47, 4459.
- [29] B.M. Aebischer, H.W. Hanssen, A.T. Vasella, W.B. Schweizer, J. Chem. Soc., Perkin Trans. 1 1982, 2139.